Suppr超能文献

用于双嵌段共聚物相行为的随机森林预测器

Random Forest Predictor for Diblock Copolymer Phase Behavior.

作者信息

Arora Akash, Lin Tzyy-Shyang, Rebello Nathan J, Av-Ron Sarah H M, Mochigase Hidenobu, Olsen Bradley D

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.

出版信息

ACS Macro Lett. 2021 Nov 16;10(11):1339-1345. doi: 10.1021/acsmacrolett.1c00521. Epub 2021 Oct 14.

Abstract

Physics-based models are the primary approach for modeling the phase behavior of block copolymers. However, the successful use of self-consistent field theory (SCFT) for designing new materials relies on the correct chemistry- and temperature-dependent Flory-Huggins interaction parameter that quantifies the incompatibility between the two blocks A and B as well as accurate estimation of the ratio of Kuhn lengths (/) and block densities. This work uses machine learning to model the phase behavior of AB diblock copolymers by using the chemical identities of blocks directly, obviating the need for measurement of χ and /. The random forest approach employed predicts the phase behavior with almost 90% accuracy after training on a data set of 4768 data points, almost twice the accuracy obtained using SCFT employing χ from group contribution theory. The machine-learning model is notably sensitive toward the uncertainty in measuring molecular parameters; however, its accuracy still remains at least 60% even for highly uncertain experimental measurements. Accuracy is substantially reduced when extrapolating to chemistries outside the training set. This work demonstrates that a random forest phase predictor performs remarkably well in many scenarios, providing an opportunity to predict self-assembly without measurement of molecular parameters.

摘要

基于物理的模型是模拟嵌段共聚物相行为的主要方法。然而,自洽场理论(SCFT)在设计新材料方面的成功应用依赖于正确的、与化学和温度相关的弗洛里-哈金斯相互作用参数,该参数量化了两个嵌段A和B之间的不相容性,以及对库恩长度比(/)和嵌段密度的准确估计。这项工作利用机器学习,通过直接使用嵌段的化学特性来模拟AB二嵌段共聚物的相行为,从而无需测量χ和/。所采用的随机森林方法在对4768个数据点的数据集进行训练后,预测相行为的准确率几乎达到90%,几乎是使用基于基团贡献理论的χ的SCFT所获得准确率的两倍。该机器学习模型对测量分子参数时的不确定性特别敏感;然而,即使对于高度不确定的实验测量,其准确率仍至少保持在60%。当外推到训练集之外的化学体系时,准确率会大幅降低。这项工作表明,随机森林相预测器在许多情况下表现出色,为在不测量分子参数的情况下预测自组装提供了机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验