Chew Soon Hong, Hoi Su Min, Tran Manh-Vu, Foo Ji Jinn
School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Malaysia.
Faculty of Engineering and Technology, Tunku Abdul Rahman University College, 53300, Kuala Lumpur, Malaysia.
Sci Rep. 2022 May 12;12(1):7861. doi: 10.1038/s41598-022-11764-x.
The impacts of partially-covered fractal grids induced turbulence on the forced convective heat transfer across plate-fin heat sink at Reynolds number Re = 22.0 × 10 were numerically and experimentally investigated. Results showed that partially covered grids rendered a higher thermal dissipation performance, with partially-covered square fractal grid (PCSFG) registering an outstanding increase of 43% in Nusselt number relative to the no grid configuration. The analyzation via an in-house developed single particle tracking velocimetry (SPTV) system displayed the findings of unique "Turbulence Annulus" formation, which provided a small degree of predictivity in the periodic annulus oscillations. Further assessments on PCSFG revealed the preferred inter-fin flow dynamics of (i) high flow velocity, (ii) strong turbulence intensity, (iii) vigorous flow fluctuations, (iv) small turbulence length scale, and (v) heightened decelerated flow events. These features stemmed from the coupling effects of multilength-scale fractal bar thicknesses in generating a veracity of eddy sizes, and a vertical segmentation producing heightened mass flow rate while inducing favourable wake-flow structures to penetrate inter-fin regions. Teeming effects of such energetic eddies within plate-fin array unveiled a powerful vortex shedding effect, with PCSFG achieving fluctuation frequency f = 18.5 Hz close to an optimal magnitude. The coaction of such traits limits the growth of fin boundary layers, providing superior thermal transfer capabilities which benefits the community in developing for higher efficiency heat transfer systems.
在雷诺数Re = 22.0×10的条件下,对部分覆盖的分形网格诱导湍流对板翅式散热器强制对流换热的影响进行了数值和实验研究。结果表明,部分覆盖的网格具有更高的热耗散性能,其中部分覆盖的方形分形网格(PCSFG)相对于无网格配置,努塞尔数显著增加了43%。通过内部开发的单粒子跟踪测速系统(SPTV)进行的分析显示了独特的“湍流环”形成的结果,这在周期性环振荡中提供了一定程度的可预测性。对PCSFG的进一步评估揭示了翅片间流动动力学的优选特征:(i)高流速,(ii)强湍流强度,(iii)剧烈的流动波动,(iv)小湍流长度尺度,以及(v)增加的减速流动事件。这些特征源于多长度尺度分形条厚度在产生准确的涡旋尺寸方面的耦合效应,以及垂直分割在提高质量流率的同时诱导有利的尾流结构穿透翅片间区域。板翅阵列中这种高能涡旋的大量效应揭示了强大的涡旋脱落效应,PCSFG实现了接近最佳幅度的波动频率f = 18.5 Hz。这些特性的共同作用限制了翅片边界层的生长,提供了卓越的热传递能力,有利于开发更高效率的热传递系统。