Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA.
Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA.
Bioinformatics. 2022 May 13;38(10):2915-2917. doi: 10.1093/bioinformatics/btac181.
We previously developed the LDM for testing hypotheses about the microbiome that performs the test at both the community level and the individual taxon level. The LDM can be applied to relative abundance data and presence-absence data separately, which work well when associated taxa are abundant and rare, respectively. Here, we propose LDM-omni3 that combines LDM analyses at the relative abundance and presence-absence data scales, thereby offering optimal power across scenarios with different association mechanisms. The new LDM-omni3 test is available for the wide range of data types and analyses that are supported by the LDM.
The LDM-omni3 test has been added to the R package LDM, which is available on GitHub at https://github.com/yijuanhu/LDM.
Supplementary data are available at Bioinformatics online.
我们之前开发了 LDM,用于检验关于微生物组的假设,该模型可在群落水平和个体分类群水平上进行检验。LDM 可分别应用于相对丰度数据和存在-缺失数据,当相关分类群丰富和稀少时,这两种方法分别效果良好。在这里,我们提出了 LDM-omni3,它将相对丰度数据和存在-缺失数据尺度上的 LDM 分析相结合,从而在具有不同关联机制的场景中提供最佳功效。新的 LDM-omni3 测试适用于 LDM 支持的广泛的数据类型和分析。
LDM-omni3 测试已添加到 R 包 LDM 中,可在 https://github.com/yijuanhu/LDM 上的 GitHub 上获得。
补充数据可在“生物信息学在线”上获得。