Suppr超能文献

多模态研究奎纳克林与微腔支撑脂质双层的相互作用。

Multimodal Investigation into the Interaction of Quinacrine with Microcavity-Supported Lipid Bilayers.

机构信息

School of Chemical Science and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland.

出版信息

Langmuir. 2022 May 24;38(20):6411-6424. doi: 10.1021/acs.langmuir.2c00524. Epub 2022 May 13.

Abstract

Quinacrine is a versatile drug that is widely recognized for its antimalarial action through its inhibition of the phospholipase enzyme. It also has antianthelmintic and antiprotozoan activities and is a strong DNA binder that may be used to combat multidrug resistance in cancer. Despite extensive cell-based studies, a detailed understanding of quinacrine's influence on the cell membrane, including permeability, binding, and rearrangement at the molecular level, is lacking. Herein, we apply microcavity-suspended lipid bilayers (MSLBs) as models of the cell membrane comprising DOPC, DOPC:Chol(3:1), and DOPC:SM:Chol(2:2:1) to investigate the influence of cholesterol and intrinsic phase heterogeneity induced by mixed-lipid composition on the membrane interactions of quinacrine. Using electrochemical impedance spectroscopy (EIS) and surface-enhanced Raman spectroscopy (SERS) as label-free surface-sensitive techniques, we have studied quinacrine interaction and permeability across the different MSLBs. Our EIS data reveal that the drug is permeable through ternary DOPC:SM:Chol and DOPC-only bilayer compositions. In contrast, the binary cholesterol/DOPC membrane arrested permeation, yet the drug binds or intercalates at this membrane as reflected by an increase in membrane impedance. SERS supported the EIS data, which was utilized to gain structural insights into the drug-membrane interaction. Our SERS data also provides a simple but powerful label-free assessment of drug permeation because a significant SERS enhancement of the drug's Raman signature was observed only if the drug accessed the plasmonic interior of the pore cavity passing through the membrane. Fluorescent lifetime correlation spectroscopy (FLCS) provides further biophysical insight, revealing that quinacrine binding increases the lipid diffusivity of DOPC and the ternary membrane while remarkably decreasing the lipid diffusivity of the DOPC:Chol membrane. Overall, because of its adaptability to multimodal approaches, the MSLB platform provides rich and detailed insights into drug-membrane interactions, making it a powerful tool for drug screening.

摘要

盐酸奎宁是一种用途广泛的药物,因其抑制磷脂酶而被广泛认为具有抗疟作用。它还具有抗蠕虫和抗原生动物的活性,是一种很强的 DNA 结合剂,可用于对抗癌症的多药耐药性。尽管有广泛的基于细胞的研究,但对盐酸奎宁对细胞膜的影响,包括在分子水平上的通透性、结合和重排,缺乏详细的了解。在此,我们应用微腔悬浮脂质双层(MSLB)作为细胞膜模型,由 DOPC、DOPC:Chol(3:1)和 DOPC:SM:Chol(2:2:1)组成,研究胆固醇和混合脂质组成引起的固有相异质性对盐酸奎宁与膜相互作用的影响。我们使用电化学阻抗谱(EIS)和表面增强拉曼光谱(SERS)作为无标记表面敏感技术,研究了盐酸奎宁在不同 MSLB 中的相互作用和渗透性。我们的 EIS 数据表明,该药物可通过三元 DOPC:SM:Chol 和 DOPC 单层组成渗透。相比之下,二元胆固醇/DOPC 膜阻止了渗透,但药物在该膜中结合或插入,反映在膜阻抗的增加。SERS 支持 EIS 数据,该数据用于获得药物-膜相互作用的结构见解。我们的 SERS 数据还提供了一种简单但强大的无标记药物渗透评估,因为只有当药物穿过膜进入等离子体内部腔时,才会观察到药物拉曼特征的显著 SERS 增强。荧光寿命相关光谱(FLCS)提供了进一步的生物物理见解,表明盐酸奎宁结合增加了 DOPC 和三元膜的脂质扩散性,同时显著降低了 DOPC:Chol 膜的脂质扩散性。总体而言,由于其对多模态方法的适应性,MSLB 平台为药物-膜相互作用提供了丰富而详细的见解,使其成为药物筛选的有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c28f/9134496/167cedcdcb07/la2c00524_0007.jpg

相似文献

1
Multimodal Investigation into the Interaction of Quinacrine with Microcavity-Supported Lipid Bilayers.
Langmuir. 2022 May 24;38(20):6411-6424. doi: 10.1021/acs.langmuir.2c00524. Epub 2022 May 13.
2
Evaluation of the passive permeability of antidepressants through pore-suspended lipid bilayer.
Colloids Surf B Biointerfaces. 2024 Feb;234:113688. doi: 10.1016/j.colsurfb.2023.113688. Epub 2023 Dec 7.
4
Microcavity-Supported Lipid Membranes: Versatile Platforms for Building Asymmetric Lipid Bilayers and for Protein Recognition.
ACS Appl Bio Mater. 2019 Aug 19;2(8):3404-3417. doi: 10.1021/acsabm.9b00378. Epub 2019 Jul 11.
5
Macromolecular inversion-driven polymer insertion into model lipid bilayer membranes.
J Colloid Interface Sci. 2019 Apr 15;542:483-494. doi: 10.1016/j.jcis.2019.01.093. Epub 2019 Jan 30.
6
Probing lipid-cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and (13)C solid-state NMR.
Biochim Biophys Acta. 2013 Aug;1828(8):1889-98. doi: 10.1016/j.bbamem.2013.03.028. Epub 2013 Apr 6.
7
Structural and nanomechanical effects of cholesterol in binary and ternary spin-coated single lipid bilayers in dry conditions.
Colloids Surf B Biointerfaces. 2014 Apr 1;116:295-302. doi: 10.1016/j.colsurfb.2013.12.049. Epub 2014 Jan 19.
8
Trans-Resveratrol Decreases Membrane Water Permeability: A Study of Cholesterol-Dependent Interactions.
J Membr Biol. 2022 Oct;255(4-5):575-590. doi: 10.1007/s00232-022-00250-0. Epub 2022 Jun 24.

引用本文的文献

1
Triplet-Triplet Annihilation Upconversion Is Impeded in Liposomes that Prevent Sensitizer and Annihilator Co-Confinement.
J Phys Chem B. 2025 Jun 26;129(25):6220-6232. doi: 10.1021/acs.jpcb.5c01826. Epub 2025 Jun 12.
2
New reverse sum Revan indices for physicochemical and pharmacokinetic properties of anti-filovirus drugs.
Front Chem. 2024 Dec 19;12:1486933. doi: 10.3389/fchem.2024.1486933. eCollection 2024.
3
Determining the Role of Surfactant on the Cytosolic Delivery of DNA Cross-Linked Micelles.
ACS Appl Mater Interfaces. 2024 Aug 21;16(33):43400-43415. doi: 10.1021/acsami.4c09894. Epub 2024 Aug 12.
4
Triplet-Triplet Annihilation Upconverting Liposomes: Mechanistic Insights into the Role of Membranes in Two-Dimensional TTA-UC.
ACS Appl Mater Interfaces. 2024 Jun 5;16(22):29324-29337. doi: 10.1021/acsami.4c00990. Epub 2024 May 22.
5
Leaflet by Leaflet Synergistic Effects of Antimicrobial Peptides on Bacterial and Mammalian Membrane Models.
J Phys Chem Lett. 2023 Apr 27;14(16):3920-3928. doi: 10.1021/acs.jpclett.3c00119. Epub 2023 Apr 19.
6
Galectin-3 Binding to αβ Integrin in Pore Suspended Biomembranes.
J Phys Chem B. 2022 Dec 8;126(48):10000-10017. doi: 10.1021/acs.jpcb.2c05717. Epub 2022 Nov 22.

本文引用的文献

2
Microcavity-Supported Lipid Membranes: Versatile Platforms for Building Asymmetric Lipid Bilayers and for Protein Recognition.
ACS Appl Bio Mater. 2019 Aug 19;2(8):3404-3417. doi: 10.1021/acsabm.9b00378. Epub 2019 Jul 11.
3
Quercetin induces lipid domain-dependent permeability.
Chem Phys Lipids. 2022 Jan;242:105160. doi: 10.1016/j.chemphyslip.2021.105160. Epub 2021 Nov 20.
4
Correlative nanophotonic approaches to enlighten the nanoscale dynamics of living cell membranes.
Biochem Soc Trans. 2021 Nov 1;49(5):2357-2369. doi: 10.1042/BST20210457.
5
Cholesterol Hinders the Passive Uptake of Amphiphilic Nanoparticles into Fluid Lipid Membranes.
J Phys Chem Lett. 2021 Sep 9;12(35):8583-8590. doi: 10.1021/acs.jpclett.1c02077. Epub 2021 Sep 1.
6
Recent Experimental Developments in Studying Passive Membrane Transport of Drug Molecules.
Mol Pharm. 2021 Jun 7;18(6):2122-2141. doi: 10.1021/acs.molpharmaceut.1c00009. Epub 2021 Apr 29.
7
A Nanoplasmonic Assay of Oligonucleotide-Cargo Delivery from Cationic Lipoplexes.
Small. 2021 Mar;17(12):e2005815. doi: 10.1002/smll.202005815. Epub 2021 Feb 26.
8
Mimicking the Mammalian Plasma Membrane: An Overview of Lipid Membrane Models for Biophysical Studies.
Biomimetics (Basel). 2020 Dec 31;6(1):3. doi: 10.3390/biomimetics6010003.
9
Effects of Antimalarial Drugs on Neuroinflammation-Potential Use for Treatment of COVID-19-Related Neurologic Complications.
Mol Neurobiol. 2021 Jan;58(1):106-117. doi: 10.1007/s12035-020-02093-z. Epub 2020 Sep 8.
10
Microcavity array supported lipid bilayer models of ganglioside - influenza hemagglutinin binding.
Chem Commun (Camb). 2020 Sep 24;56(76):11251-11254. doi: 10.1039/d0cc04276e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验