Suppr超能文献

骨髓增殖性肿瘤的分子发病机制:从分子谱到治疗意义。

Molecular Pathogenesis of Myeloproliferative Neoplasms: From Molecular Landscape to Therapeutic Implications.

机构信息

Clinica di Ematologia, Ospedali Riuniti di Ancona, Via Conca 71, 60126 Ancona, Italy.

出版信息

Int J Mol Sci. 2022 Apr 20;23(9):4573. doi: 10.3390/ijms23094573.

Abstract

Despite distinct clinical entities, the myeloproliferative neoplasms (MPN) share morphological similarities, propensity to thrombotic events and leukemic evolution, and a complex molecular pathogenesis. Well-known driver mutations, , and , determining constitutive activation of JAK-STAT signaling pathway are the hallmark of MPN pathogenesis. Recent data in MPN patients identified the presence of co-occurrence somatic mutations associated with epigenetic regulation, messenger RNA splicing, transcriptional mechanism, signal transduction, and DNA repair mechanism. The integration of genetic information within clinical setting is already improving patient management in terms of disease monitoring and prognostic information on disease progression. Even the current therapeutic approaches are limited in disease-modifying activity, the expanding insight into the genetic basis of MPN poses novel candidates for targeted therapeutic approaches. This review aims to explore the molecular landscape of MPN, providing a comprehensive overview of the role of drive mutations and additional mutations, their impact on pathogenesis as well as their prognostic value, and how they may have future implications in therapeutic management.

摘要

尽管存在明显的临床实体,但骨髓增殖性肿瘤(MPN)具有形态学相似性、倾向于发生血栓事件和白血病演变,以及复杂的分子发病机制。众所周知的驱动突变、和 ,决定 JAK-STAT 信号通路的组成性激活,是 MPN 发病机制的标志。最近在 MPN 患者中的数据确定了存在与表观遗传调控、信使 RNA 剪接、转录机制、信号转导和 DNA 修复机制相关的共发生体细胞突变。将遗传信息整合到临床环境中,已经在疾病监测和疾病进展的预后信息方面改善了患者管理。即使目前的治疗方法在疾病修饰活性方面受到限制,但对 MPN 遗传基础的深入了解为靶向治疗方法提供了新的候选方法。这篇综述旨在探讨 MPN 的分子景观,全面概述驱动突变和其他突变的作用、它们对发病机制的影响及其预后价值,以及它们将来如何对治疗管理产生影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62dc/9100530/e484976fe78a/ijms-23-04573-g001.jpg

相似文献

2
JAK-STAT signaling in the therapeutic landscape of myeloproliferative neoplasms.
Mol Cell Endocrinol. 2017 Aug 15;451:71-79. doi: 10.1016/j.mce.2017.01.050. Epub 2017 Feb 3.
3
Mutational landscape of blast phase myeloproliferative neoplasms (MPN-BP) and antecedent MPN.
Int Rev Cell Mol Biol. 2022;366:83-124. doi: 10.1016/bs.ircmb.2021.02.008. Epub 2021 Dec 14.
4
Overview of Transgenic Mouse Models of Myeloproliferative Neoplasms (MPNs).
Curr Protoc Pharmacol. 2017 Jun 22;77:14.40.1-14.40.19. doi: 10.1002/cpph.23.
5
Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms.
Blood. 2017 Feb 9;129(6):667-679. doi: 10.1182/blood-2016-10-695940. Epub 2016 Dec 27.
6
[Clinical application of gene mutation information in myeloproliferative neoplasms].
Rinsho Ketsueki. 2019;60(6):610-618. doi: 10.11406/rinketsu.60.610.
7
Unfolding the Role of Calreticulin in Myeloproliferative Neoplasm Pathogenesis.
Clin Cancer Res. 2019 May 15;25(10):2956-2962. doi: 10.1158/1078-0432.CCR-18-3777. Epub 2019 Jan 17.
8
[Not Available].
Bull Cancer. 2016 Jun;103(6 Suppl 1):S16-28. doi: 10.1016/S0007-4551(16)30142-4.
9
Mechanism underlying the development of myeloproliferative neoplasms through mutant calreticulin.
Cancer Sci. 2020 Aug;111(8):2682-2688. doi: 10.1111/cas.14503. Epub 2020 Jun 27.

引用本文的文献

1
Research trends in essential thrombocythemia from 2001 to 2024: a bibliometric analysis.
Discov Oncol. 2025 Apr 15;16(1):528. doi: 10.1007/s12672-025-02232-9.
4
The Role of Mutated Calreticulin in the Pathogenesis of -Negative Myeloproliferative Neoplasms.
Int J Mol Sci. 2024 Sep 12;25(18):9873. doi: 10.3390/ijms25189873.
7
Mesenchymal stromal cells in myeloid malignancies: Immunotherapeutic opportunities.
Heliyon. 2024 Jan 22;10(3):e25081. doi: 10.1016/j.heliyon.2024.e25081. eCollection 2024 Feb 15.
8
Post-transcriptional regulation of erythropoiesis.
Blood Sci. 2023 Apr 26;5(3):150-159. doi: 10.1097/BS9.0000000000000159. eCollection 2023 Jul.

本文引用的文献

1
The ERK2-DBP domain opposes pathogenesis of a mouse JAK2V617F-driven myeloproliferative neoplasm.
Blood. 2022 Jul 28;140(4):359-373. doi: 10.1182/blood.2021013068.
3
CAMK2G is identified as a novel therapeutic target for myelofibrosis.
Blood Adv. 2022 Mar 8;6(5):1585-1597. doi: 10.1182/bloodadvances.2020003303.
6
Next Generation Therapeutics for the Treatment of Myelofibrosis.
Cells. 2021 Apr 27;10(5):1034. doi: 10.3390/cells10051034.
7
Mutations and thrombosis in essential thrombocythemia.
Blood Cancer J. 2021 Apr 27;11(4):77. doi: 10.1038/s41408-021-00470-y.
8
Myelofibrosis: challenges for preclinical models and emerging therapeutic targets.
Expert Opin Ther Targets. 2021 Mar;25(3):211-222. doi: 10.1080/14728222.2021.1915992. Epub 2021 Apr 19.
10
Genetics of Myeloproliferative Neoplasms.
Hematol Oncol Clin North Am. 2021 Apr;35(2):217-236. doi: 10.1016/j.hoc.2020.12.002. Epub 2021 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验