Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia.
Int J Mol Sci. 2022 May 1;23(9):5039. doi: 10.3390/ijms23095039.
Mitochondrial Complex II is composed of four core subunits and mutations to any of the subunits result in lowered Complex II activity. Surprisingly, although mutations in any of the subunits can yield similar clinical outcomes, there are distinct differences in the patterns of clinical disease most commonly associated with mutations in different subunits. Thus, mutations to the SdhA subunit most often result in mitochondrial disease phenotypes, whilst mutations to the other subunits SdhB-D more commonly result in tumour formation. The reason the clinical outcomes are so different is unknown. Here, we individually antisense-inhibited three of the Complex II subunits, SdhA, SdhB or SdhC, in the simple model organism . Whilst SdhB and SdhC knockdown resulted in growth defects on bacterial lawns, antisense inhibition of SdhA expression resulted in a different pattern of phenotypic defects, including impairments of growth in liquid medium, enhanced intracellular proliferation of the bacterial pathogen and phagocytosis. Knockdown of the individual subunits also produced different abnormalities in mitochondrial function with only SdhA knockdown resulting in broad mitochondrial dysfunction. Furthermore, these defects were shown to be mediated by the chronic activation of the cellular energy sensor AMP-activated protein kinase. Our results are in agreement with a role for loss of function of SdhA but not the other Complex II subunits in impairing mitochondrial oxidative phosphorylation and they suggest a role for AMP-activated protein kinase in mediating the cytopathological outcomes.
线粒体复合物 II 由四个核心亚基组成,任何亚基的突变都会导致复合物 II 活性降低。令人惊讶的是,尽管任何亚基的突变都可能产生相似的临床结果,但与不同亚基突变相关的临床疾病模式却存在明显差异。因此,SdhA 亚基的突变最常导致线粒体疾病表型,而其他亚基 SdhB-D 的突变更常导致肿瘤形成。临床结果如此不同的原因尚不清楚。在这里,我们分别在简单的模式生物中反义抑制了复合物 II 的三个亚基,SdhA、SdhB 或 SdhC。虽然 SdhB 和 SdhC 的敲低导致细菌菌落在生长缺陷,但 SdhA 表达的反义抑制导致了不同的表型缺陷模式,包括在液体培养基中的生长受损、细菌病原体的细胞内增殖增强和吞噬作用。单个亚基的敲低也导致线粒体功能的不同异常,只有 SdhA 的敲低导致广泛的线粒体功能障碍。此外,这些缺陷是由细胞能量传感器 AMP 激活蛋白激酶的慢性激活介导的。我们的结果与 SdhA 功能丧失而不是其他复合物 II 亚基丧失在损害线粒体氧化磷酸化中的作用一致,并表明 AMP 激活蛋白激酶在介导细胞病理结果中起作用。