Suppr超能文献

一种新颖的纵向聚类方法,用于基于医院的 PsyCourse 研究中跨诊断实体的精神病理学。

A novel longitudinal clustering approach to psychopathology across diagnostic entities in the hospital-based PsyCourse study.

机构信息

Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstr 7, Munich 80336, Germany; Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Nussbaumstr 7, Munich 80336, Germany.

Institute of Computational Biology, Helmholtz Center Munich, Ingolstädter Landstr. 1, Oberschleissheim 85764, Germany; Department of Mathematics, Technische Universität München, Boltzmannstr 3, Garching 85748, Germany.

出版信息

Schizophr Res. 2022 Jun;244:29-38. doi: 10.1016/j.schres.2022.05.001. Epub 2022 May 11.

Abstract

Biological research and clinical management in psychiatry face two major impediments: the high degree of overlap in psychopathology between diagnoses and the inherent heterogeneity with regard to severity. Here, we aim to stratify cases into homogeneous transdiagnostic subgroups using psychometric information with the ultimate aim of identifying individuals with higher risk for severe illness. 397 participants of the PsyCourse study with schizophrenia- or bipolar-spectrum diagnoses were prospectively phenotyped over 18 months. Factor analysis of mixed data of different rating scales and subsequent longitudinal clustering were used to cluster disease trajectories. Five clusters of longitudinal trajectories were identified in the psychopathologic dimensions. Clusters differed significantly with regard to Global Assessment of Functioning, disease course, and-in some cases-diagnosis while there were no significant differences regarding sex, age at baseline or onset, duration of illness, or polygenic burden for schizophrenia. Longitudinal clustering may aid in identifying transdiagnostic homogeneous subgroups of individuals with severe psychiatric disease.

摘要

精神病学中的生物研究和临床管理面临两个主要障碍

诊断之间的精神病理学高度重叠和严重程度的固有异质性。在这里,我们旨在使用心理计量信息将病例分层为同质的跨诊断亚组,最终目的是识别患有更严重疾病风险的个体。397 名参加 PsyCourse 研究的精神分裂症或双相谱系诊断患者在 18 个月内进行了前瞻性表型分析。使用不同评分量表的混合数据的因子分析和随后的纵向聚类用于聚类疾病轨迹。在精神病理学维度中确定了五个纵向轨迹簇。聚类在总体功能评估、疾病过程方面存在显著差异,并且在某些情况下与诊断存在显著差异,而在性别、基线或发病时的年龄、疾病持续时间或精神分裂症的多基因负担方面则没有显著差异。纵向聚类可能有助于识别患有严重精神疾病的同质跨诊断个体亚组。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验