Bleeker Jorrit, Reichert Stijn, Veerman Joost, Vermaas David A
Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, The Netherlands.
REDstack BV, Graaf Adolfstraat 35-G, 8606 BT, Sneek, The Netherlands.
Sci Rep. 2022 May 14;12(1):7993. doi: 10.1038/s41598-022-11817-1.
Here we assess the route to convert low grade waste heat (< 100 °C) into electricity by leveraging the temperature dependency of redox potentials, similar to the Seebeck effect in semiconductor physics. We use fluid-based redox-active species, which can be easily heated and cooled using heat exchangers. By using a first principles approach, we designed a redox flow battery system with Fe(CN)/Fe(CN) and I/I chemistry. We evaluate the continuous operation with one flow cell at high temperature and one at low temperature. We show that the most sensitive parameter, the temperature coefficient of the redox reaction, can be controlled via the redox chemistry, the reaction quotient and solvent additives, and we present the highest temperature coefficient for this RFB chemistry. A power density of 0.6 W/m and stable operation for 2 h are achieved experimentally. We predict high (close to Carnot) heat-to-power efficiencies if challenges in the heat recuperation and Ohmic resistance are overcome, and the temperature coefficient is further increased.
在此,我们评估了一种利用氧化还原电位的温度依赖性将低品位废热(<100°C)转化为电能的途径,这类似于半导体物理学中的塞贝克效应。我们使用基于流体的氧化还原活性物质,其可通过热交换器轻松加热和冷却。通过采用第一性原理方法,我们设计了一种具有Fe(CN)/Fe(CN)和I/I化学体系的氧化还原液流电池系统。我们评估了一个高温流动电池和一个低温流动电池的连续运行情况。我们表明,最敏感的参数——氧化还原反应的温度系数——可通过氧化还原化学、反应商和溶剂添加剂来控制,并且我们展示了这种氧化还原液流电池化学体系的最高温度系数。实验实现了0.6 W/m的功率密度和2小时的稳定运行。我们预测,如果克服热回收和欧姆电阻方面的挑战,并进一步提高温度系数,热到功率的效率将很高(接近卡诺效率)。