Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
Neurochem Int. 2022 Jul;157:105360. doi: 10.1016/j.neuint.2022.105360. Epub 2022 May 13.
Maple syrup urine disease (MSUD) is an autosomal recessive neurometabolic disorder caused by severe deficiency of branched-chain α-keto acid dehydrogenase complex activity, which catalyzes the oxidative decarboxylation of the branched-chain α-keto acids (BCKA). The metabolic blockage results in tissue accumulation and high urinary excretion of the branched-chain amino acids (BCAA) leucine, isoleucine and valine, as well as alloisoleucine, and their respective BCKA α-ketoisocaproic (α-KIC), α-ketoisovaleric and α-keto-β-methylvaleric acids. Affected patients usually manifest acute episodes of encephalopathy associated with seizures, coma and life-threatening cerebral edema in the first weeks of life, which is followed by progressive neurological deterioration with motor delay, ataxia, intellectual disability and psychiatric symptoms. The pathophysiology of the brain damage in MSUD has been mainly focused on brain amino acid imbalance leading to deficient cerebral protein and neurotransmitter synthesis. However, the acute episodes of severe neurological symptoms accompanied by large increases of BCKA/BCAA levels suggest neurotoxic actions of these compounds. In this particular, mounting evidence from humans and animal models support an important role of particularly leucine and α-KIC on the pathogenesis of the brain injury in MSUD. In this review we will present the current knowledge of the major mechanisms presumably involved in MSUD neuropathology and highlight the neurotoxic properties of the BCAA and BCKA, disturbing brain bioenergetics and redox homeostasis, besides inducing neuroinflammation. We suggest that these pathomechanisms may contribute to the neurological sequelae of MSUD patients and hopefully allow the design of novel therapeutic strategies, including antioxidant and bioenergetics stimulating drugs targeting the mitochondria.
枫糖尿症(MSUD)是一种常染色体隐性遗传的神经代谢疾病,由支链α-酮酸脱氢酶复合物活性严重缺乏引起,该复合物催化支链α-酮酸(BCKA)的氧化脱羧。代谢阻断导致组织积累和支链氨基酸(BCAA)亮氨酸、异亮氨酸和缬氨酸以及别异亮氨酸及其各自的 BCKA α-酮异己酸(α-KIC)、α-酮异戊酸和 α-酮-β-甲基戊酸的高尿排泄。受影响的患者通常在生命的头几周表现出与癫痫发作相关的急性脑病发作、昏迷和危及生命的脑水肿,随后出现进行性神经恶化,伴有运动延迟、共济失调、智力残疾和精神症状。MSUD 中脑损伤的病理生理学主要集中在脑氨基酸失衡导致脑蛋白和神经递质合成不足。然而,伴有 BCKA/BCAA 水平大幅升高的严重神经症状急性发作表明这些化合物具有神经毒性作用。在这方面,来自人类和动物模型的越来越多的证据支持亮氨酸和 α-KIC 对 MSUD 脑损伤发病机制的重要作用。在这篇综述中,我们将介绍目前对 MSUD 神经病理学中可能涉及的主要机制的了解,并强调 BCAA 和 BCKA 的神经毒性特性,这些特性会扰乱脑生物能量和氧化还原稳态,同时诱导神经炎症。我们认为这些病理机制可能导致 MSUD 患者的神经后遗症,并有望为包括针对线粒体的抗氧化剂和生物能量刺激药物在内的新型治疗策略的设计提供依据。