Landeke-Wilsmark Björn, Hägglund Carl
Division of Solar Cell Technology, Department of Materials Science and Engineering, Uppsala University, PO Box 35, SE-75103 Uppsala, Sweden.
Nanotechnology. 2022 May 17;33(32). doi: 10.1088/1361-6528/ac64b1.
Metal(NPs) can exhibit unique electronic, magnetic, optical, and catalytic properties. Highly ordered, dense arrays of non-close-packed, surface-supported metal NPs are thus of potential use in a wide range of applications. Implementing such arrays over large surfaces can, however, be both technologically challenging and prohibitively expensive using conventional top-down nanofabrication techniques. Moreover, many existing patterning methods are too harsh for sensitive substrate surfaces and their applications. To address this, we here investigate a fabrication protocol involving a water-based lift-off scheme in which the template pattern generation is rapidly and inexpensively achieved through(BCP) self-assembly. A three-layer lift-off stack consisting of, from top to bottom, a poly(styrene--2-vinyl pyridine) template, a SiOintermediate hardmask, and a water-soluble poly(vinyl alcohol) sacrificial layer is employed in this endeavor.(SISR) is used to generate an initial surface topography in the BCP template which is subsequently transferred to the layers beneath in a sequence of reactive ion etching steps. Through judicious selection of stack materials and dry etch chemistries, a layered, high-aspect-ratio, nanoporous mask is thus implemented. After metal deposition, the mask and excess material are simply removed in a lift-off step by dissolving the bottommost sacrificial layer in water. The incorporation of an intermediate hardmask and a water-soluble sacrificial layer obviates the need for harmful and/or corrosive lift-off solvents and decouples the BCP self-assembly process from the influence of substrate properties. We demonstrate the generation of well-ordered arrays of Au NPs capable of supporting sharp, localized surface plasmon resonances. We also investigate improvements to large-scale uniformity, as this is found sensitive to the SISR termination step in the original protocol. Extensions of the technique to other BCP morphologies and materials deposited ought to be straightforward.
金属纳米颗粒(NPs)可展现出独特的电子、磁性、光学和催化特性。因此,高度有序、密集排列的非密排、表面支撑金属纳米颗粒阵列在广泛的应用中具有潜在用途。然而,使用传统的自上而下的纳米制造技术在大面积表面上实现这种阵列在技术上具有挑战性且成本过高。此外,许多现有的图案化方法对于敏感的基底表面及其应用来说过于苛刻。为了解决这个问题,我们在此研究一种涉及水基剥离方案的制造协议,其中通过(BCP)自组装快速且廉价地实现模板图案生成。在这项工作中,采用了一个三层剥离堆叠结构,从顶部到底部依次为聚(苯乙烯 - 2 - 乙烯基吡啶)模板、SiO中间硬掩膜和水溶性聚(乙烯醇)牺牲层。(SISR)用于在BCP模板中生成初始表面形貌,随后在一系列反应离子蚀刻步骤中将其转移到下面的层中。通过明智地选择堆叠材料和干法蚀刻化学物质,从而实现了一种分层的、高纵横比的纳米多孔掩膜。金属沉积后,通过将最底层的牺牲层溶解在水中,在剥离步骤中简单地去除掩膜和多余的材料。中间硬掩膜和水溶性牺牲层的引入避免了使用有害和/或腐蚀性的剥离溶剂,并且使BCP自组装过程与基底特性的影响解耦。我们展示了能够支持尖锐的、局域表面等离子体共振的有序金纳米颗粒阵列的生成。我们还研究了对大规模均匀性的改进,因为发现这对原始协议中的SISR终止步骤敏感。将该技术扩展到其他BCP形态和沉积材料应该是直接可行的。