Suppr超能文献

用于可扩展多模态热管理的分层形态金属/聚合物异质结构

Hierarchical-Morphology Metal/Polymer Heterostructure for Scalable Multimodal Thermal Management.

作者信息

Yang Zhangbin, Jia Yu, Zhang Jun

机构信息

College of Materials Science & Engineering, Nanjing Tech University, Nanjing 211816, China.

Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211816, China.

出版信息

ACS Appl Mater Interfaces. 2022 Jun 1;14(21):24755-24765. doi: 10.1021/acsami.2c03513. Epub 2022 May 17.

Abstract

The cooling and heating energy consumption of buildings poses a serious threat to the energy supply and increases greenhouse gas emissions, thus adversely impacting global warming and the long-term climate change trends. Here, inspired by the structure of the louver, this work demonstrates a multimodal device that integrates radiative cooling, natural lighting, and solar heating to deal with the grand challenge of building energy consumption. The blades integrate a selective radiative cooling material with a solar heating material. The selective radiative cooling material (solar reflectance ∼97%, selective emittance ∼0.82 in the 8-13 μm waveband) combines a solar reflective melt-blown polypropylene film and a solar transparent mid-infrared emitter polyethylene/silicon dioxide film. In addition, the heating material (solar absorptance ∼91%, thermal emittance ∼0.04) is zinc (Zn) film deposited with copper (Cu) nanoparticles, based on the Cu-Zn galvanic-displacement reaction. Hence, by rotating the blades, the conversion of radiative cooling, solar heating, and natural lighting functions can be realized. In the daytime, the multimodal device displays a subambient temperature of 4 °C, a superambient temperature of 2 °C, and a superambient temperature of 5 °C for the cooling mode, transmitting mode, and solar heating mode, respectively. On the basis of the energy-savings simulation, integrating these modes and dynamic converting these modes in the corresponding climate could save ∼746 GJ in the contiguous United States for one year (38% of the baseline energy consumption), which is equivalent to ∼147 tons of carbon dioxide emission reduction. Because of its excellent multimodal thermal management performance, this multimodal device will push forward the transformative change of building thermal management toward decarbonization and sustainability and being more green.

摘要

建筑物的制冷和制热能耗对能源供应构成了严重威胁,并增加了温室气体排放,从而对全球变暖和长期气候变化趋势产生不利影响。在此,受百叶窗结构的启发,本研究展示了一种多模式装置,该装置集成了辐射制冷、自然采光和太阳能加热功能,以应对建筑能耗这一重大挑战。叶片将选择性辐射制冷材料与太阳能加热材料结合在一起。选择性辐射制冷材料(太阳能反射率约为97%,在8-13μm波段的选择性发射率约为0.82)由太阳能反射熔喷聚丙烯薄膜和太阳能透明中红外发射体聚乙烯/二氧化硅薄膜组成。此外,基于铜-锌电置换反应,加热材料(太阳能吸收率约为91%,热发射率约为0.04)是沉积有铜(Cu)纳米颗粒的锌(Zn)薄膜。因此,通过旋转叶片,可以实现辐射制冷、太阳能加热和自然采光功能的转换。在白天,对于冷却模式、透射模式和太阳能加热模式,该多模式装置分别显示出比环境温度低4℃、比环境温度高2℃和比环境温度高5℃的温度。基于节能模拟,在美国本土将这些模式集成并在相应气候条件下动态转换这些模式,一年可节省约746吉焦(占基准能耗的38%),这相当于减少约147吨二氧化碳排放。由于其出色的多模式热管理性能,这种多模式装置将推动建筑热管理向脱碳、可持续性和更绿色方向的变革性转变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验