Raj J U, Conhaim R L, Bhattacharya J
J Appl Physiol (1985). 1987 Feb;62(2):781-4. doi: 10.1152/jappl.1987.62.2.781.
We have investigated the mechanism of alveolar liquid filling in pulmonary edema. We excised, degassed, and intrabronchially filled 14 dog lung lobes from nine dogs with 75, 150, 225, or 350 ml of 5% albumin solution, and then air inflated the lobes to a constant airway pressure of 25 cmH2O. By use of micropipettes, we punctured subpleural alveoli to measure alveolar liquid pressure by the servo-null technique. Alveolar liquid pressure was constant in all lobes despite differences in lobe liquid volume and averaged 10.6 +/- 1.3 cmH2O. Thus, in all lobes a constant pressure drop of 14.4 cmH2O existed from airway to alveolar liquid across the air-liquid interface. We attribute this finding, on the basis of the Laplace equation, to an air-liquid interface of constant radius in all the lobes. In fact, we calculated from the Laplace equation an air-liquid interface radius which equalled morphological estimates of alveolar radius. We conclude that in the steady state, alveoli that contained liquid have a constant radius of curvature of the air-liquid interface possibly because they are always completely liquid filled.
我们研究了肺水肿时肺泡液体充盈的机制。我们从9只狗身上切除、排气,并向14个肺叶支气管内注入75、150、225或350毫升5%的白蛋白溶液,然后将肺叶充气至气道压力恒定为25厘米水柱。我们使用微量移液器穿刺胸膜下肺泡,通过伺服零技术测量肺泡液体压力。尽管肺叶液体量不同,但所有肺叶的肺泡液体压力恒定,平均为10.6±1.3厘米水柱。因此,在所有肺叶中,从气道到肺泡液体穿过气液界面存在14.4厘米水柱的恒定压降。基于拉普拉斯方程,我们将这一发现归因于所有肺叶中气液界面半径恒定。事实上,我们根据拉普拉斯方程计算出的气液界面半径与肺泡半径的形态学估计值相等。我们得出结论,在稳态下,含有液体的肺泡气液界面曲率半径恒定,可能是因为它们总是完全充满液体。