Institute of Biological Chemistry, Washington State University, Pullman, WA, USA.
Institute of Biological Chemistry, Washington State University, Pullman, WA, USA.
J Plant Physiol. 2022 Jul;274:153717. doi: 10.1016/j.jplph.2022.153717. Epub 2022 May 11.
Hydroxy fatty acids (HFA) are industrially useful chemical feedstocks that accumulate in seed-storage triacylglycerols (TAG) of several plant species, including castor (Ricinus communis) and Physaria (Physaria fendleri). For researchers, HFA also offer a unique opportunity to trace fatty acid metabolism and modification. Past work producing HFA in Arabidopsis (Arabidopsis thaliana) has demonstrated the importance of isozymes of TAG synthesis from plants that evolved to store HFA and as a result have a high degree of specificity towards HFA substrates. Castor phospholipase A2α (RcPLA2) has specificity for HFA-containing phosphatidylcholine. However, expression of RcPLA2 in HFA-accumulating Arabidopsis line CL37-PLA2 reduced HFA content of TAG. This loss was interpreted as being due to poor ability of Arabidopsis longchain acyl-CoA synthetases (LACSs) to utilize HFAs substrates. LACS enzymes are essential to activate HFA to HFA-CoA for TAG synthesis. Physaria is a close relative of Arabidopsis in the Brassicaceae family. To test the hypothesis that this close relatedness would allow Physaria LACSs to interface successfully with Arabidopsis enzymes of seed lipid metabolism and thereby restore HFA accumulation, we transformed PfLACS4 and PfLACS8 constructs into the CL37-PLA2 line. However, HFA content was not recovered, and biochemical characterization of recombinant PfLACS4 and PfLACS8 indicated that these isozymes have substrate specificities and selectivities that are similar to their Arabidopsis orthologues. These and other results pose an important question about how HFA synthesized on phosphatidylcholine can be transferred into the acyl-CoA pool for TAG synthesis.
羟基脂肪酸 (HFA) 是工业上有用的化学原料,它们在几种植物物种的种子储存三酰基甘油(TAG)中积累,包括蓖麻 (Ricinus communis) 和肾叶舟形藻 (Physaria fendleri)。对于研究人员来说,HFA 还提供了一个追踪脂肪酸代谢和修饰的独特机会。过去在拟南芥 (Arabidopsis thaliana) 中生产 HFA 的工作表明,对于那些进化到储存 HFA 的植物,TAG 合成同工酶的重要性,并且对 HFA 底物具有高度的特异性。蓖麻磷脂酶 A2α (RcPLA2) 对含有 HFA 的磷脂酰胆碱具有特异性。然而,在 HFA 积累的拟南芥株系 CL37-PLA2 中表达 RcPLA2 降低了 TAG 中 HFA 的含量。这种损失被解释为由于拟南芥长链酰基辅酶 A 合成酶 (LACS) 利用 HFA 底物的能力较差。LACS 酶对于将 HFA 激活为 HFA-CoA 以用于 TAG 合成是必不可少的。肾叶舟形藻是十字花科植物中与拟南芥密切相关的物种。为了验证这样一种假设,即这种密切的亲缘关系将允许肾叶舟形藻 LACS 与拟南芥种子脂质代谢的酶成功接口,并由此恢复 HFA 的积累,我们将 PfLACS4 和 PfLACS8 构建体转化到 CL37-PLA2 株系中。然而,HFA 的含量并未恢复,并且对重组 PfLACS4 和 PfLACS8 的生化特性分析表明,这些同工酶具有与它们的拟南芥同源物相似的底物特异性和选择性。这些和其他结果提出了一个重要的问题,即如何将在磷脂酰胆碱上合成的 HFA 转移到酰基辅酶 A 池中用于 TAG 合成。