Suppr超能文献

孟加拉国儿童营养不足测量的流行情况及其空间人口不平等:多水平贝叶斯模型的应用。

Prevalence of child undernutrition measures and their spatio-demographic inequalities in Bangladesh: an application of multilevel Bayesian modelling.

机构信息

School of Demography, Australian National University, Ellery Crescent, Canberra, 2601, ACT, Australia.

Statistical Support Network, Australian National University, Science Road, Canberra, 2601, ACT, Australia.

出版信息

BMC Public Health. 2022 May 18;22(1):1008. doi: 10.1186/s12889-022-13170-4.

Abstract

Micro-level statistics on child undernutrition are highly prioritized by stakeholders for measuring and monitoring progress on the sustainable development goals. In this regard district-representative data were collected in the Bangladesh Multiple Indicator Cluster Survey 2019 for identifying localised disparities. However, district-level estimates of undernutrition indicators - stunting, wasting and underweight - remain largely unexplored. This study aims to estimate district-level prevalence of these indicators as well as to explore their disparities at sub-national (division) and district level spatio-demographic domains cross-classified by children sex, age-groups, and place of residence. Bayesian multilevel models are developed at the sex-age-residence-district level, accounting for cross-sectional, spatial and spatio-demographic variations. The detailed domain-level predictions are aggregated to higher aggregation levels, which results in numerically consistent and reasonable estimates when compared to the design-based direct estimates. Spatio-demographic distributions of undernutrition indicators indicate south-western districts have lower vulnerability to undernutrition than north-eastern districts, and indicate significant inequalities within and between administrative hierarchies, attributable to child age and place of residence. These disparities in undernutrition at both aggregated and disaggregated spatio-demographic domains can aid policymakers in the social inclusion of the most vulnerable to meet the sustainable development goals by 2030.

摘要

儿童营养不良的微观统计数据是利益攸关方高度优先考虑的,用于衡量和监测可持续发展目标的进展。在这方面,孟加拉国 2019 年多指标类集调查收集了具有代表性的地区数据,以确定局部差异。然而,营养不良指标(发育迟缓、消瘦和体重不足)的地区估计数在很大程度上仍未得到探索。本研究旨在估计这些指标的地区流行率,并探索其在次国家(分区)和地区层面上的差异,这些差异是按儿童性别、年龄组和居住地交叉分类的。在性别-年龄-居住地-地区层面上开发了贝叶斯多层次模型,以考虑横断面、空间和空间人口统计学变化。详细的域级预测被汇总到更高的聚合级别,与基于设计的直接估计相比,结果具有数值一致性和合理性。营养不良指标的空间人口统计学分布表明,西南部地区的营养不良脆弱性低于东北部地区,并且在行政等级内和之间存在显著的不平等,这归因于儿童年龄和居住地。在聚合和非聚合的空间人口统计学领域的这些营养不良差异,可以帮助政策制定者在社会包容方面最弱势群体,以实现 2030 年可持续发展目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd3d/9118603/201581f20747/12889_2022_13170_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验