Suppr超能文献

通过嵌入周期性障碍物微结构来调节正弦通道中的粒子惯性分离

Tuning particle inertial separation in sinusoidal channels by embedding periodic obstacle microstructures.

作者信息

Cha Haotian, Fallahi Hedieh, Dai Yuchen, Yadav Sharda, Hettiarachchi Samith, McNamee Antony, An Hongjie, Xiang Nan, Nguyen Nam-Trung, Zhang Jun

机构信息

Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.

Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.

出版信息

Lab Chip. 2022 Jul 26;22(15):2789-2800. doi: 10.1039/d2lc00197g.

Abstract

Inertial microfluidics functions solely based on the fluid dynamics at relatively high flow speed. Thus, channel geometry is the critical design parameter that contributes to the performance of the device. Four basic channel geometries (, straight, expansion-contraction, spiral and serpentine) have been proposed and extensively studied. To further enhance the performance, innovative channel design through combining two or more geometries is promising. This work explores embedding periodic concave and convex obstacle microstructures in sinusoidal channels and investigates their influence on particle inertial focusing and separation. The concave obstacles could significantly enhance the Dean flow and tune the flow range for particle inertial focusing and separation. Based on this finding, we propose a cascaded device by connecting two sinusoidal channels consecutively for rare cell separation. The concave obstacles are embedded in the second channel to adapt its operational flow rates and enable the functional operation of both channels. Polystyrene beads and breast cancer cells (T47D) spiking in the blood were respectively processed by the proposed device. The results indicate an outstanding separation performance, with 3 to 4 orders of magnitude enhancement in purity for samples with a primary cancer cells ratio of 0.01% and 0.001%, respectively. Embedding microstructures as obstacles brings more flexibility to the design of inertial microfluidic devices, offering a feasible new way to combine two or more serial processing units for high-performance separation.

摘要

惯性微流控仅基于相对较高流速下的流体动力学起作用。因此,通道几何形状是影响该装置性能的关键设计参数。已经提出并广泛研究了四种基本通道几何形状(直通道、扩张 - 收缩通道、螺旋通道和蛇形通道)。为了进一步提高性能,通过组合两种或更多种几何形状进行创新通道设计很有前景。这项工作探索在正弦通道中嵌入周期性凹凸障碍物微结构,并研究它们对颗粒惯性聚焦和分离的影响。凹形障碍物可以显著增强迪恩流,并调整颗粒惯性聚焦和分离的流速范围。基于这一发现,我们提出一种通过连续连接两个正弦通道来进行稀有细胞分离的级联装置。凹形障碍物嵌入第二个通道以适应其工作流速,并使两个通道都能正常运行。所提出的装置分别对聚苯乙烯珠和掺入血液中的乳腺癌细胞(T47D)进行了处理。结果表明该装置具有出色的分离性能,对于原发性癌细胞比例分别为0.01%和0.001%的样品,纯度提高了3到4个数量级。将微结构作为障碍物嵌入为惯性微流控装置的设计带来了更大的灵活性,为组合两个或更多个串联处理单元以实现高性能分离提供了一种可行的新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验