Suppr超能文献

高剂量纳米晶固体分散体粉末的伏立康唑吸入剂。

High dose nanocrystalline solid dispersion powder of voriconazole for inhalation.

机构信息

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, SAS Nagar, Mohali, Punjab 160062, India.

Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, SAS Nagar, Mohali, Punjab 160062, India.

出版信息

Int J Pharm. 2022 Jun 25;622:121827. doi: 10.1016/j.ijpharm.2022.121827. Epub 2022 May 17.

Abstract

In the current work, we aimed to deliver high dose of voriconazole (VRC) to lung through dry powder for inhalation (DPIs). Furthermore, the research tested the hypothesis that drug nanocrystals can escape the clearance mechanisms in lung by virtue of their size and rapid dissolution. High dose nanocrystalline solid dispersion (NCSD) based DPI of VRC was prepared using a novel spray drying process. Mannitol (MAN) and soya lecithin (LEC) were used as crystallization inducer and stabilizer, respectively. The powders were characterized for physicochemical and aerodynamic properties. Chemical interactions contributing to generation and stabilization of VRC nanocrystals in the matrix of MAN were established using computational studies. Performance of NCSD (VRC-N) was compared with microcrystalline solid dispersion (VRC-M) in terms of dissolution, uptake in A549 and RAW 264.7 cells. Plasma and lung distribution of VRC-N and VRC-M in Balb/c mice upon insufflation was compared with the intravenous product. In VRC-N, drug nanocrystals of size 645.86 ± 56.90 nm were successfully produced at VRC loading of 45%. MAN created physical barrier to crystal growth by interacting with N- of triazole and F- of pyrimidine ring of VRC. An increase in drug loading to 60% produced VRC crystals of size 4800 ± 200 nm (VRC-M). The optimized powders were crystalline and showed deposition at stage 2 and 3 in NGI. In comparison to VRC-M, more than 80% of VRC-N dissolved rapidly in around 5-10 mins, therefore, showed higher and lower drug uptake into A549 and RAW 264.7 cells, respectively. In contrast to intravenous product, insufflation of VRC-N and VRC-M led to higher drug concentrations in lung in comparison to plasma. VRC-N showed higher lung AUC due to escape of macrophage clearance.

摘要

在目前的工作中,我们旨在通过干粉吸入(DPI)将高剂量伏立康唑(VRC)递送到肺部。此外,该研究测试了一个假设,即药物纳米晶体可以凭借其大小和快速溶解来逃避肺部的清除机制。使用新型喷雾干燥工艺制备了基于高剂量纳米晶固体分散体(NCSD)的 VRC DPI。甘露醇(MAN)和大豆卵磷脂(LEC)分别用作结晶诱导剂和稳定剂。对粉末的物理化学和空气动力学性质进行了表征。使用计算研究确定了促成和稳定 MAN 基质中 VRC 纳米晶体生成的化学相互作用。从溶解、A549 和 RAW 264.7 细胞摄取的角度,比较了 NCSD(VRC-N)和微晶体固体分散体(VRC-M)的性能。与静脉产品相比,比较了 BALB/c 小鼠吸入后 VRC-N 和 VRC-M 的血浆和肺部分布。在 VRC-N 中,成功地在 VRC 负载为 45%的情况下生产出粒径为 645.86±56.90nm 的药物纳米晶体。MAN 通过与 VRC 的三唑 N 和嘧啶环的 F 相互作用,形成物理屏障来阻止晶体生长。药物负载增加到 60%,产生粒径为 4800±200nm 的 VRC 晶体(VRC-M)。优化后的粉末为结晶性,在 NGI 中显示在第 2 阶段和第 3 阶段沉积。与 VRC-M 相比,VRC-N 在 5-10 分钟左右迅速溶解超过 80%,因此对 A549 和 RAW 264.7 细胞的摄取量分别更高和更低。与静脉产品相比,与静脉产品相比,VRC-N 和 VRC-M 的吸入导致肺部药物浓度高于血浆。VRC-N 由于逃避巨噬细胞清除而显示出更高的肺部 AUC。

相似文献

1
High dose nanocrystalline solid dispersion powder of voriconazole for inhalation.
Int J Pharm. 2022 Jun 25;622:121827. doi: 10.1016/j.ijpharm.2022.121827. Epub 2022 May 17.
2
Optimization of Particle Properties of Nanocrystalline Solid Dispersion Based Dry Powder for Inhalation of Voriconazole.
J Pharm Sci. 2022 Sep;111(9):2592-2605. doi: 10.1016/j.xphs.2022.06.007. Epub 2022 Jun 11.
3
Enhanced Aerosolization of High Potency Nanoaggregates of Voriconazole by Dry Powder Inhalation.
Mol Pharm. 2019 May 6;16(5):1799-1812. doi: 10.1021/acs.molpharmaceut.8b00907. Epub 2019 Apr 10.
5
Dry powder insufflation of crystalline and amorphous voriconazole formulations produced by thin film freezing to mice.
Eur J Pharm Biopharm. 2012 Aug;81(3):600-8. doi: 10.1016/j.ejpb.2012.04.019. Epub 2012 May 1.
8
Development of inhalable hyaluronan/mannitol composite dry powders for flucytosine repositioning in local therapy of lung infections.
J Control Release. 2016 Sep 28;238:80-91. doi: 10.1016/j.jconrel.2016.07.029. Epub 2016 Jul 19.
10
Effect of formulation and inhaler parameters on the dispersion of spray freeze dried voriconazole particles.
Int J Pharm. 2020 Jun 30;584:119444. doi: 10.1016/j.ijpharm.2020.119444. Epub 2020 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验