Suppr超能文献

用于减少触觉互联网延迟的 FPGA 预测技术。

Prediction Techniques on FPGA for Latency Reduction on Tactile Internet.

机构信息

Laboratory of Machine Learning and Intelligent Instrumentation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.

Federal Institute of Education, Science and Technology of Rio Grande do Norte, Santa Cruz 59200-000, Brazil.

出版信息

Sensors (Basel). 2022 May 7;22(9):3556. doi: 10.3390/s22093556.

Abstract

Tactile Internet (TI) is a new internet paradigm that enables sending touch interaction information and other stimuli, which will lead to new human-to-machine applications. However, TI applications require very low latency between devices, as the system's latency can result from the communication channel, processing power of local devices, and the complexity of the data processing techniques, among others. Therefore, this work proposes using dedicated hardware-based reconfigurable computing to reduce the latency of prediction techniques applied to TI. Finally, we demonstrate that prediction techniques developed on field-programmable gate array (FPGA) can minimize the impacts caused by delays and loss of information. To validate our proposal, we present a comparison between software and hardware implementations and analyze synthesis results regarding hardware area occupation, throughput, and power consumption. Furthermore, comparisons with state-of-the-art works are presented, showing a significant reduction in power consumption of ≈1300× and reaching speedup rates of up to ≈52×.

摘要

触觉互联网(TI)是一种新的互联网范例,能够发送触摸交互信息和其他刺激,从而带来新的人机应用。然而,TI 应用需要设备之间非常低的延迟,因为系统的延迟可能来自于通信信道、本地设备的处理能力以及数据处理技术的复杂性等。因此,这项工作提出使用基于专用硬件的可重构计算来降低应用于 TI 的预测技术的延迟。最后,我们证明了在现场可编程门阵列(FPGA)上开发的预测技术可以最小化延迟和信息丢失造成的影响。为了验证我们的建议,我们在软件和硬件实现之间进行了比较,并分析了硬件面积占用、吞吐量和功耗方面的综合结果。此外,还与最先进的工作进行了比较,显示出功耗降低了约 1300 倍,达到了高达 52 倍的加速比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44c5/9105700/d3ec2e382033/sensors-22-03556-g001.jpg

相似文献

1
Prediction Techniques on FPGA for Latency Reduction on Tactile Internet.
Sensors (Basel). 2022 May 7;22(9):3556. doi: 10.3390/s22093556.
2
FPGA Applied to Latency Reduction for the Tactile Internet.
Sensors (Basel). 2022 Oct 16;22(20):7851. doi: 10.3390/s22207851.
3
Cost-Effective Network Reordering Using FPGA.
Sensors (Basel). 2023 Jan 10;23(2):819. doi: 10.3390/s23020819.
4
Proposal of Takagi-Sugeno Fuzzy-PI Controller Hardware.
Sensors (Basel). 2020 Apr 2;20(7):1996. doi: 10.3390/s20071996.
5
Fully Parallel Implementation of Otsu Automatic Image Thresholding Algorithm on FPGA.
Sensors (Basel). 2021 Jun 17;21(12):4151. doi: 10.3390/s21124151.
6
Proposal of the Tactile Glove Device.
Sensors (Basel). 2019 Nov 18;19(22):5029. doi: 10.3390/s19225029.
7
Three realizations and comparison of hardware for piezoresistive tactile sensors.
Sensors (Basel). 2011;11(3):3249-66. doi: 10.3390/s110303249. Epub 2011 Mar 17.
8
SHA-256 Hardware Proposal for IoT Devices in the Blockchain Context.
Sensors (Basel). 2024 Jun 17;24(12):3908. doi: 10.3390/s24123908.
10
Designing Deep Learning Hardware Accelerator and Efficiency Evaluation.
Comput Intell Neurosci. 2022 Jul 13;2022:1291103. doi: 10.1155/2022/1291103. eCollection 2022.

本文引用的文献

1
FPGA Applied to Latency Reduction for the Tactile Internet.
Sensors (Basel). 2022 Oct 16;22(20):7851. doi: 10.3390/s22207851.
2
Internet of things-inspired healthcare system for urine-based diabetes prediction.
Artif Intell Med. 2020 Jul;107:101913. doi: 10.1016/j.artmed.2020.101913. Epub 2020 Jun 15.
3
Parallel fixed point implementation of a radial basis function network in an FPGA.
Sensors (Basel). 2014 Sep 29;14(10):18223-43. doi: 10.3390/s141018223.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验