Solheid Juliana S, Elkaseer Ahmed, Wunsch Torsten, Scholz Steffen, Seifert Hans J, Pfleging Wilhelm
Institute for Applied Materials-Applied Materials Physics, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany.
Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany.
Materials (Basel). 2022 May 5;15(9):3323. doi: 10.3390/ma15093323.
Metal parts produced by additive manufacturing often require postprocessing to meet the specifications of the final product, which can make the process chain long and complex. Laser post-processes can be a valuable addition to conventional finishing methods. Laser polishing, specifically, is proving to be a great asset in improving the surface quality of parts in a relatively short time. For process development, experimental analysis can be extensive and expensive regarding the time requirement and laboratory facilities, while computational simulations demand the development of numerical models that, once validated, provide valuable tools for parameter optimization. In this work, experiments and simulations are performed based on the design of experiments to assess the effects of the parametric inputs on the resulting surface roughness and heat-affected zone depths. The data obtained are used to create both linear regression and artificial neural network models for each variable. The models with the best performance are then used in a multiobjective genetic algorithm optimization to establish combinations of parameters. The proposed approach successfully identifies an acceptable range of values for the given input parameters (laser power, focal offset, axial feed rate, number of repetitions, and scanning speed) to produce satisfactory values of Ra and HAZ simultaneously.
增材制造生产的金属零件通常需要进行后处理以满足最终产品的规格要求,这可能会使工艺链变得冗长复杂。激光后处理可以成为传统精加工方法的宝贵补充。具体而言,激光抛光在相对较短的时间内提高零件表面质量方面被证明是一项巨大的优势。对于工艺开发,实验分析在时间要求和实验室设施方面可能会非常广泛且昂贵,而计算模拟则需要开发数值模型,一旦经过验证,这些模型将为参数优化提供有价值的工具。在这项工作中,基于实验设计进行了实验和模拟,以评估参数输入对所得表面粗糙度和热影响区深度的影响。获得的数据用于为每个变量创建线性回归模型和人工神经网络模型。然后,将性能最佳的模型用于多目标遗传算法优化,以确定参数组合。所提出的方法成功地为给定的输入参数(激光功率、焦距偏移、轴向进给速度、重复次数和扫描速度)确定了可接受的值范围,以同时产生令人满意 的Ra和热影响区值。