Suppr超能文献

复杂高压超导超氢化物的低压电化学合成

Low-Pressure Electrochemical Synthesis of Complex High-Pressure Superconducting Superhydrides.

作者信息

Guan Pin-Wen, Sun Ying, Hemley Russell J, Liu Hanyu, Ma Yanming, Viswanathan Venkatasubramanian

机构信息

Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.

International Center of Computational Method and Software and State Key Laboratory for Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.

出版信息

Phys Rev Lett. 2022 May 6;128(18):186001. doi: 10.1103/PhysRevLett.128.186001.

Abstract

There is great current interest in multicomponent superhydrides due to their unique quantum properties under pressure. A remarkable example is the ternary superhydride Li_{2}MgH_{16} computationally identified to have an unprecedented high superconducting critical temperature T_{c} of ∼470  K at 250 GPa. However, the very high synthesis pressures required remains a significant hurdle for detailed study and potential applications. In this Letter, we evaluate the feasibility of synthesizing ternary Li-Mg superhydrides by the recently proposed pressure-potential (P^{2}) method that uniquely combines electrochemistry and applied pressure to control synthesis and stability. The results indicate that it is possible to synthesize Li-Mg superhydrides at modest pressures by applying suitable electrode potentials. Using pressure alone, no Li-Mg ternary hydrides are predicted to be thermodynamically stable, but in the presence of electrode potentials, both Li_{2}MgH_{16} and Li_{4}MgH_{24} can be stabilized at modest pressures. Three polymorphs are predicted as ground states of Li_{2}MgH_{16} below 300 GPa, with transitions at 33 and 160 GPa. The highest pressure phase is superconducting, while the two at lower pressures are not. Our findings point out the potentially important role of the P^{2} method in controlling phase stability of complex multicomponent superhydrides.

摘要

由于多组分超氢化物在压力下具有独特的量子特性,目前人们对其有着浓厚的兴趣。一个显著的例子是三元超氢化物Li₂MgH₁₆,经计算发现在250吉帕的压力下它具有前所未有的约470K的高超导临界温度Tc。然而,所需的极高合成压力仍然是详细研究和潜在应用的重大障碍。在本信函中,我们评估了通过最近提出的压力-电势(P²)方法合成三元锂-镁超氢化物的可行性,该方法独特地结合了电化学和外加压力来控制合成与稳定性。结果表明,通过施加合适的电极电势,有可能在适度压力下合成锂-镁超氢化物。仅使用压力时,预计没有锂-镁三元氢化物在热力学上是稳定的,但在存在电极电势的情况下,Li₂MgH₁₆和Li₄MgH₂₄都可以在适度压力下稳定存在。预测在300吉帕以下Li₂MgH₁₆有三种多晶型作为基态,在33吉帕和160吉帕处有转变。最高压力相是超导的,而较低压力下的两个相不是。我们的发现指出了P²方法在控制复杂多组分超氢化物相稳定性方面潜在的重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验