Gangarosa Department of Environmental Health, Emory University, Atlanta, GA, USA.
Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA.
J Expo Sci Environ Epidemiol. 2023 May;33(3):377-385. doi: 10.1038/s41370-022-00446-5. Epub 2022 May 20.
Population-based short-term air pollution health studies often have limited spatiotemporally representative exposure data, leading to concerns of exposure measurement error.
To compare the use of monitoring and modeled exposure metrics in time-series analyses of air pollution and cardiorespiratory emergency department (ED) visits.
We obtained daily counts of ED visits for Atlanta, GA during 2009-2013. We leveraged daily ZIP code level concentration estimates for eight pollutants from nine exposure metrics. Metrics included central monitor (CM), monitor-based (inverse distance weighting, kriging), model-based [community multiscale air quality (CMAQ), land use regression (LUR)], and satellite-based measures. We used Poisson models to estimate air pollution health associations using the different exposure metrics. The approach involved: (1) assessing CM-based associations, (2) determining if non-CM metrics can reproduce CM-based associations, and (3) identifying potential value added of incorporating full spatiotemporal information provided by non-CM metrics.
Using CM exposures, we observed associations between cardiovascular ED visits and carbon monoxide, nitrogen dioxide, fine particulate matter, elemental and organic carbon, and between respiratory ED visits and ozone. Non-CM metrics were largely able to reproduce CM-based associations, although some unexpected results using CMAQ- and LUR-based metrics reduced confidence in these data for some spatiotemporally-variable pollutants. Associations with nitrogen dioxide and sulfur dioxide were only detected, or were stronger, when using metrics that incorporate all available monitoring data (i.e., inverse distance weighting and kriging).
The use of routinely-collected ambient monitoring data for exposure assignment in time-series studies of large metropolitan areas is a sound approach, particularly when data from multiple monitors are available. More sophisticated approaches derived from CMAQ, LUR, or satellites may add value when monitoring data are inadequate and if paired with thorough data characterization. These results are useful for interpretation of existing literature and for improving exposure assessment in future studies.
This study compared and interpreted the use of monitoring and modeled exposure metrics in a daily time-series analysis of air pollution and cardiorespiratory emergency department visits. The results suggest that the use of routinely-collected ambient monitoring data in population-based short-term air pollution and health studies is a sound approach for exposure assignment in large metropolitan regions. CMAQ-, LUR-, and satellite-based metrics may allow for health effects estimation when monitoring data are sparse, if paired with thorough data characterization. These results are useful for interpretation of existing health effects literature and for improving exposure assessment in future air pollution epidemiology studies.
基于人群的短期空气污染健康研究通常具有有限的时空代表性暴露数据,这导致了对暴露测量误差的担忧。
比较监测和模型化暴露指标在空气污染和心肺急救部门(ED)就诊的时间序列分析中的应用。
我们获得了 2009-2013 年期间佐治亚州亚特兰大市每日 ED 就诊的次数。我们利用了来自九个暴露指标的每日邮政编码级别的八种污染物的浓度估计值。指标包括中央监测器(CM)、基于监测器的(逆距离加权、克里金)、基于模型的(社区多尺度空气质量模型(CMAQ)、土地利用回归(LUR))和卫星测量。我们使用泊松模型来估计使用不同暴露指标的空气污染与健康的关联。该方法包括:(1)评估 CM 为基础的关联,(2)确定非-CM 指标是否可以重现 CM 为基础的关联,以及(3)确定纳入非-CM 指标提供的完整时空信息的潜在附加值。
使用 CM 暴露,我们观察到心血管急救就诊与一氧化碳、二氧化氮、细颗粒物、元素和有机碳以及呼吸道急救就诊与臭氧之间存在关联。非-CM 指标在很大程度上能够重现 CM 为基础的关联,尽管使用 CMAQ 和 LUR 为基础的指标时出现了一些意想不到的结果,这降低了对某些时空可变污染物的这些数据的信心。只有在使用整合了所有可用监测数据的指标(即,逆距离加权和克里金)时,才会检测到二氧化氮和二氧化硫的关联,或者这些关联更强。
在大都市地区的空气污染和健康时间序列研究中,使用常规收集的环境监测数据进行暴露评估是一种合理的方法,特别是当有多个监测器的数据时。当监测数据不足时,从 CMAQ、LUR 或卫星中衍生的更复杂的方法,如果与彻底的数据特征化相结合,可能会增加价值。这些结果有助于解释现有文献,并改进未来研究中的暴露评估。
本研究比较并解释了监测和模型化暴露指标在空气污染和心肺急救部门就诊的每日时间序列分析中的应用。结果表明,在基于人群的短期空气污染和健康研究中,使用常规收集的环境监测数据进行暴露评估是在大都市地区进行的一种合理方法。如果与彻底的数据特征化相结合,CMAQ、LUR 和卫星为基础的指标可以在监测数据稀缺时允许进行健康影响估计。这些结果有助于解释现有健康影响文献,并改进未来空气污染流行病学研究中的暴露评估。