Suppr超能文献

淋巴细胞增多症的诊断前轨迹可预测慢性淋巴细胞白血病患者的治疗时间和死亡时间。

Pre-diagnostic trajectories of lymphocytosis predict time to treatment and death in patients with chronic lymphocytic leukemia.

作者信息

Andersen Michael Asger, Grand Mia Klinten, Brieghel Christian, Siersma Volkert, Andersen Christen Lykkegaard, Niemann Carsten Utoft

机构信息

Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Department of Clinical Pharmacology, Bispebjerg Hospital, Copenhagen, Denmark.

出版信息

Commun Med (Lond). 2022 May 12;2:50. doi: 10.1038/s43856-022-00117-4. eCollection 2022.

Abstract

BACKGROUND

The dynamics of pre-diagnostic lymphocytosis in patients with ensuing chronic lymphocytic leukemia (CLL) need to be explored as a better understanding of disease progression may improve treatment options and even lead to disease avoidance approaches. Our aim was to investigate the development of lymphocytosis prior to diagnosis in a population-based cohort of patients with CLL and to assess the prognostic information in these pre-diagnostic measurements.

METHODS

All patients diagnosed with CLL in the Greater Copenhagen area between 2008 and 2016 were included in the study. Pre-diagnostic blood test results were obtained from the Copenhagen Primary Care Laboratory Database encompassing all blood tests requested by Copenhagen general practitioners. Using pre-diagnostic measurements, we developed a model to assess the prognosis following diagnosis. Our model accounts for known prognostic factors and corresponds to lymphocyte dynamics after diagnosis.

RESULTS

We explore trajectories of lymphocytosis, associated with known recurrent mutations. We show that the pre-diagnostic trajectories are an independent predictor of time to treatment. The implementation of pre-diagnostic lymphocytosis slope groups improved the model predictions (compared to CLL-IPI alone) for treatment throughout the period. The model can manage the heterogeneous data that are to be expected from the real-world setting and adds further prognostic information.

CONCLUSIONS

Our findings further knowledge of the development of CLL and may eventually make prophylactic measures possible.

摘要

背景

对于后续发展为慢性淋巴细胞白血病(CLL)的患者,其诊断前淋巴细胞增多的动态变化需要进行探究,因为更好地了解疾病进展可能会改善治疗方案,甚至可能带来疾病预防方法。我们的目的是在一个基于人群的CLL患者队列中研究诊断前淋巴细胞增多的发展情况,并评估这些诊断前测量中的预后信息。

方法

纳入2008年至2016年在大哥本哈根地区诊断为CLL的所有患者。诊断前的血液检测结果来自哥本哈根初级保健实验室数据库,该数据库包含哥本哈根全科医生要求的所有血液检测。利用诊断前的测量结果,我们开发了一个模型来评估诊断后的预后。我们的模型考虑了已知的预后因素,并与诊断后的淋巴细胞动态变化相对应。

结果

我们探索了与已知复发性突变相关的淋巴细胞增多轨迹。我们表明,诊断前的轨迹是治疗时间的独立预测因素。在整个治疗期间,诊断前淋巴细胞增多斜率分组的实施改善了模型预测(与单独使用CLL-IPI相比)。该模型可以处理来自现实世界环境中预期的异质性数据,并增加了进一步的预后信息。

结论

我们的研究结果进一步加深了对CLL发展的认识,并最终可能使预防措施成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/968a/9098503/23b8ccf8a654/43856_2022_117_Fig1_HTML.jpg

相似文献

1
Pre-diagnostic trajectories of lymphocytosis predict time to treatment and death in patients with chronic lymphocytic leukemia.
Commun Med (Lond). 2022 May 12;2:50. doi: 10.1038/s43856-022-00117-4. eCollection 2022.
3
Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia.
N Engl J Med. 2008 Aug 7;359(6):575-83. doi: 10.1056/NEJMoa075290.
4
6
[Chronic lymphocytic leukaemia presenting with specific cutaneous infiltrates in the absence of lymphocytosis: Two cases].
Ann Dermatol Venereol. 2012 Oct;139(10):641-6. doi: 10.1016/j.annder.2012.06.040. Epub 2012 Sep 1.
7
Explainable machine learning for chronic lymphocytic leukemia treatment prediction using only inexpensive tests.
Comput Biol Med. 2022 Jun;145:105490. doi: 10.1016/j.compbiomed.2022.105490. Epub 2022 Apr 6.
10
An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data.
Lancet Oncol. 2016 Jun;17(6):779-790. doi: 10.1016/S1470-2045(16)30029-8. Epub 2016 May 13.

引用本文的文献

1
Machine Learning Model Predicts Abnormal Lymphocytosis Associated With Chronic Lymphocytic Leukemia.
JCO Clin Cancer Inform. 2025 Jun;9:e2400197. doi: 10.1200/CCI-24-00197. Epub 2025 Jun 24.
3
The Copenhagen Primary Care Laboratory (CopLab) Database.
Clin Epidemiol. 2024 Mar 1;16:155-163. doi: 10.2147/CLEP.S437123. eCollection 2024.
4
It is feasible and safe to stop specialized follow-up of asymptomatic lower-risk chronic lymphocytic leukemia.
Blood Adv. 2024 Aug 27;8(16):4449-4456. doi: 10.1182/bloodadvances.2023012382.
5
Blood sampling patterns in primary care change several years before a cancer diagnosis.
Acta Oncol. 2024 Feb 13;63:17-22. doi: 10.2340/1651-226X.2024.28559.

本文引用的文献

1
Identifying patients with chronic lymphocytic leukemia without need of treatment: End of endless watch and wait?
Eur J Haematol. 2022 May;108(5):369-378. doi: 10.1111/ejh.13743. Epub 2022 Jan 22.
2
Artificial intelligence models in chronic lymphocytic leukemia - recommendations toward state-of-the-art.
Leuk Lymphoma. 2022 Feb;63(2):265-278. doi: 10.1080/10428194.2021.1973672. Epub 2021 Oct 6.
3
Targeting the tumor microenvironment in chronic lymphocytic leukemia.
Haematologica. 2021 Sep 1;106(9):2312-2324. doi: 10.3324/haematol.2020.268037.
4
Antimicrobial use before chronic lymphocytic leukemia: a retrospective cohort study.
Leukemia. 2021 Mar;35(3):747-751. doi: 10.1038/s41375-020-0980-0. Epub 2020 Jul 20.
5
International prognostic score for asymptomatic early-stage chronic lymphocytic leukemia.
Blood. 2020 May 21;135(21):1859-1869. doi: 10.1182/blood.2019003453.
6
The Number of Signaling Pathways Altered by Driver Mutations in Chronic Lymphocytic Leukemia Impacts Disease Outcome.
Clin Cancer Res. 2020 Mar 15;26(6):1507-1515. doi: 10.1158/1078-0432.CCR-18-4158. Epub 2020 Jan 9.
7
Growth dynamics in naturally progressing chronic lymphocytic leukaemia.
Nature. 2019 Jun;570(7762):474-479. doi: 10.1038/s41586-019-1252-x. Epub 2019 May 29.
8
iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL.
Blood. 2018 Jun 21;131(25):2745-2760. doi: 10.1182/blood-2017-09-806398. Epub 2018 Mar 14.
9
Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention.
Science. 2017 Mar 24;355(6331):1330-1334. doi: 10.1126/science.aaf9011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验