Suppr超能文献

何时决策:人工智能可靠性在风险决策环境下的影响。

Knowing When to Pass: The Effect of AI Reliability in Risky Decision Contexts.

机构信息

Technische Universität Berlin, Berlin, Germany, and University of Missouri-Columbia, Columbia, Missouri, USA.

Missouri University of Science & Technology, Rolla, Missouri, USA.

出版信息

Hum Factors. 2024 Feb;66(2):348-362. doi: 10.1177/00187208221100691. Epub 2022 May 21.

Abstract

OBJECTIVE

This study manipulates the presence and reliability of AI recommendations for risky decisions to measure the effect on task performance, behavioral consequences of trust, and deviation from a probability matching collaborative decision-making model.

BACKGROUND

Although AI decision support improves performance, people tend to underutilize AI recommendations, particularly when outcomes are uncertain. As AI reliability increases, task performance improves, largely due to higher rates of compliance (following action recommendations) and reliance (following no-action recommendations).

METHODS

In a between-subject design, participants were assigned to a high reliability AI, low reliability AI, or a control condition. Participants decided whether to bet that their team would win in a series of basketball games tying compensation to performance. We evaluated task performance (in accuracy and signal detection terms) and the behavioral consequences of trust (via compliance and reliance).

RESULTS

AI recommendations improved task performance, had limited impact on risk-taking behavior, and were under-valued by participants. Accuracy, sensitivity (), and reliance increased in the high reliability AI condition, but there was no effect on response bias () or compliance. Participant behavior was only consistent with a probability matching model for compliance in the low reliability condition.

CONCLUSION

In a pay-off structure that incentivized risk-taking, the primary value of the AI recommendations was in determining when to perform no action (i.e., pass on bets).

APPLICATION

In risky contexts, designers need to consider whether action or no-action recommendations will be more influential to design appropriate interventions.

摘要

目的

本研究通过操纵 AI 推荐在风险决策中的存在和可靠性,来衡量其对任务绩效、信任的行为后果以及对概率匹配协同决策模型的偏离程度的影响。

背景

尽管 AI 决策支持可以提高绩效,但人们往往会低估 AI 建议的作用,尤其是在结果不确定的情况下。随着 AI 可靠性的提高,任务绩效会提高,这主要是因为更高的遵从率(遵循行动建议)和依赖率(遵循非行动建议)。

方法

在一项被试间设计中,参与者被分配到高可靠性 AI、低可靠性 AI 或对照组。参与者需要决定是否打赌他们的团队在一系列篮球比赛中会获胜,比赛结果与表现挂钩。我们评估了任务绩效(从准确性和信号检测的角度)以及信任的行为后果(通过遵从和依赖)。

结果

AI 推荐提高了任务绩效,对冒险行为的影响有限,且被参与者低估。在高可靠性 AI 条件下,准确性、敏感性()和依赖度增加,但对反应偏差()或遵从度没有影响。在低可靠性条件下,参与者的行为仅与遵从的概率匹配模型一致。

结论

在奖励结构中鼓励冒险的情况下,AI 建议的主要价值在于确定何时不采取行动(即不参与投注)。

应用

在风险环境中,设计师需要考虑行动或非行动建议哪个更有影响力,以便设计出适当的干预措施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验