Guo Fei, Liu Zhuo, Zhang Yiyong, Xiao Jie, Zeng Xiaoyuan, Zhang Chengxu, Dong Peng, Liu Tingting, Zhang Yingjie, Li Mian
National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China.
School of Materials and Energy, Yunnan Key Laboratory for Micro/Nano Materials and Technology, Yunnan University, No. 2, Green Lake North Road, Kunming 650091, PR China.
ACS Appl Mater Interfaces. 2022 Jun 1;14(21):24447-24461. doi: 10.1021/acsami.2c04956. Epub 2022 May 23.
The integration of nickel (Ni) nanoparticle (NP)-embedded carbon layers (Ni@C) into the three-dimensional (3D) hierarchically porous carbon architectures, where ultrahigh boron (B) and nitrogen (N) doping is a potential methodology for boosting Ni catalysts' water splitting performances, was achieved. In this study, the novel 3D ultrafine Ni NP-embedded and B- and N-codoped hierarchically porous carbon nanowires (denoted as Ni@BNPCFs) were successfully synthesized via pyrolysis of the corresponding 3D nickel acetate [Ni(AC)·4HO]-hydroxybenzeneboronic acid-polyvinylpyrrolidone precursor networks woven by electrospinning. After optimizing the pyrolysis temperatures, various structural and morphological characterization analyses indicate that the optimal Ni@BNPCFs-900 networks own a large surface area, abundant micro/mesopores, and vast carbon edges/defects, which boost doping a large amount of B (5.81 atom %) and N (5.84 atom %) dopants into carbon frameworks with 6.36 atom % of BC, pyridinic-N (pyridinic-N-Ni), and graphitic-N active sites. Electrochemical measurements demonstrate that Ni@BNPCFs-900 reveals the best hydrogen evolution reaction (HER) and oxygen reduction reaction catalytic activities in an alkaline solution. The HER potential at 10 mA cm [ = -164.2 mV reversible hydrogen electrode (RHE)] of the optimal Ni@BNPCFs-900 is just 96.2 mV more negative than that of the state-of-the-art 20 wt % Pt/C ( = -68 mV RHE). In particular, the OER and Tafel slope of the optimal Ni@BNPCFs-900 (1.517 V RHE and 19.31 mV dec) are much smaller than those of RuO (1.557 V RHE and 64.03 mV dec). For full water splitting, the catalytic current density achieves 10 mA cm at a low cell voltage of 1.584 V for the (-) Ni@BNPCFs-900||Ni@BNPCFs-900 (+) electrolysis cell, which is 10 mV smaller than that of the (-) 20 wt % Pt/C||RuO (+) benchmark (1.594 V) under the same conditions. The synergistic effects of 3D hierarchically porous structures, advanced charge transport ability, and abundant active centers [such as Ni@BNC, BC, pyridinic-N (pyridinic-N-Ni), and graphitic-N] are responsible for the excellent water-splitting catalytic activity of the Ni@BNPCFs-900 networks. Especially, because of the remarkable structural and chemical stabilities of 3D hierarchically porous Ni@BNPCFs-900 networks, the (-) Ni@BNPCFs-900||Ni@BNPCFs-900 (+) water electrolysis cell displays an excellent stability.
将嵌入镍(Ni)纳米颗粒(NP)的碳层(Ni@C)整合到三维(3D)分级多孔碳结构中,其中超高硼(B)和氮(N)掺杂是提高Ni催化剂析水性能的一种潜在方法。在本研究中,通过对相应的由静电纺丝编织的三维醋酸镍[Ni(AC)·4H₂O]-羟基苯硼酸-聚乙烯吡咯烷酮前驱体网络进行热解,成功合成了新型的3D超细Ni NP嵌入且B和N共掺杂的分级多孔碳纳米线(记为Ni@BNPCFs)。在优化热解温度后,各种结构和形态表征分析表明,最佳的Ni@BNPCFs-900网络具有大表面积、丰富的微/中孔以及大量的碳边缘/缺陷,这有助于将大量的B(5.81原子%)和N(5.84原子%)掺杂剂掺入到具有6.36原子%的BC、吡啶-N(吡啶-N-Ni)和石墨-N活性位点的碳骨架中。电化学测量表明,Ni@BNPCFs-900在碱性溶液中表现出最佳的析氢反应(HER)和氧还原反应催化活性。最佳的Ni@BNPCFs-900在10 mA cm⁻²时的HER电位(相对于可逆氢电极(RHE)为-164.2 mV)仅比最先进的20 wt% Pt/C(相对于RHE为-68 mV)负96.2 mV。特别地,最佳的Ni@BNPCFs-900的析氧反应(OER)过电位和塔菲尔斜率(相对于RHE为1.517 V和19.31 mV dec⁻¹)远小于RuO₂(相对于RHE为1.557 V和64.03 mV dec⁻¹)。对于全水解,在(-)Ni@BNPCFs-900||Ni@BNPCFs-900(+)电解槽的低电池电压1.584 V下,催化电流密度达到10 mA cm⁻²,这比相同条件下(-)20 wt% Pt/C||RuO₂(+)基准(1.594 V)小10 mV。3D分级多孔结构、先进的电荷传输能力和丰富的活性中心[如Ni@BNC、BC、吡啶-N(吡啶-N-Ni)和石墨-N]的协同作用是Ni@BNPCFs-900网络优异的析水催化活性的原因。特别是,由于3D分级多孔Ni@BNPCFs-900网络具有显著的结构和化学稳定性,(-)Ni@BNPCFs-900||Ni@BNPCFs-900(+)水电解槽表现出优异的稳定性。