Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
Clin Neurol Neurosurg. 2022 Jul;218:107298. doi: 10.1016/j.clineuro.2022.107298. Epub 2022 May 17.
Symptomatic intracranial hemorrhage (sICH) is a devastating complication of endovascular thrombectomy (EVT). We aim to develop and validate a nomogram for predicting sICH in patients with large vessel occlusion (LVO) in the anterior circulation.
We performed a single-center retrospective analysis on collected data from patients undergoing EVT for LVO in the anterior circulation between January 2018 and December 2021. Forward stepwise logistic regression was performed to identify independent predictors of sICH and establish a nomogram. The discrimination and calibration of the model was accessed using the area under the receiver operating characteristic curve (AUC-ROC) and calibration plot. The model was internally validated using bootstrap and 5-fold cross-validation.
243 patients were included, among whom 23 developed sICH (9.5%). After multivariate logistic regression, baseline glucose level (odds ratio [OR], 1.16; p = 0.022), Alberta Stroke Program Early CT Score (OR, 0.44; p < 0.001), regional Leptomeningeal Collateral score (OR, 0.74; p < 0.001) were identified as independent predictors of sICH, which were then incorporated into a predictive nomogram. The ROC curve of the model showed good discriminative ability with an AUC of 0.856 (95% CI: 0.785-0.928). The calibration plot of the model demonstrated good consistency between the actual observed and the predicted probability of sICH. The model was internally validated by using bootstrap (1000 resamples) with an AUC of 0.835 (95%CI: 0.782-0.887) and 5-fold cross-validation with an AUC of 0.831 (95%CI: 0.775-0.887).
Our model is a reliable tool to predict sICH after EVT. Although the model was internally validated, further external validation is also warranted.
症状性颅内出血(sICH)是血管内血栓切除术(EVT)的一种毁灭性并发症。我们旨在为前循环大血管闭塞(LVO)患者开发和验证预测 sICH 的列线图。
我们对 2018 年 1 月至 2021 年 12 月期间接受前循环 LVO EVT 的患者的收集数据进行了单中心回顾性分析。使用向前逐步逻辑回归确定 sICH 的独立预测因子,并建立列线图。使用接受者操作特征曲线下面积(AUC-ROC)和校准图评估模型的区分度和校准度。使用 bootstrap 和 5 折交叉验证对内模型进行内部验证。
共纳入 243 例患者,其中 23 例发生 sICH(9.5%)。经过多变量逻辑回归,基线血糖水平(比值比 [OR],1.16;p=0.022)、阿尔伯塔卒中计划早期 CT 评分(OR,0.44;p<0.001)、区域性软脑膜侧支评分(OR,0.74;p<0.001)被确定为 sICH 的独立预测因子,然后将其纳入预测列线图。模型的 ROC 曲线显示出良好的区分能力,AUC 为 0.856(95%CI:0.785-0.928)。模型的校准图显示实际观察到的和预测的 sICH 概率之间具有良好的一致性。通过使用 bootstrap(1000 个样本)进行内部验证,模型的 AUC 为 0.835(95%CI:0.782-0.887),通过 5 折交叉验证,模型的 AUC 为 0.831(95%CI:0.775-0.887)。
我们的模型是预测 EVT 后 sICH 的可靠工具。尽管对模型进行了内部验证,但也需要进一步的外部验证。