Suppr超能文献

KIL1 通过控制花丝衰老来终止玉米的育性。

KIL1 terminates fertility in maize by controlling silk senescence.

机构信息

Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium.

VIB Center of Plant Systems Biology, Ghent 9052, Belgium.

出版信息

Plant Cell. 2022 Jul 30;34(8):2852-2870. doi: 10.1093/plcell/koac151.

Abstract

Plant flowers have a functional life span during which pollination and fertilization occur to ensure seed and fruit development. Once flower senescence is initiated, the potential to set seed or fruit is irrevocably lost. In maize, silk strands are the elongated floral stigmas that emerge from the husk-enveloped inflorescence to intercept airborne pollen. Here we show that KIRA1-LIKE1 (KIL1), an ortholog of the Arabidopsis NAC (NAM (NO APICAL MERISTEM), ATAF1/2 (Arabidopsis thaliana Activation Factor1 and 2) and CUC (CUP-SHAPED COTYLEDON 2)) transcription factor KIRA1, promotes senescence and programmed cell death (PCD) in the silk strand base, ending the window of accessibility for fertilization of the ovary. Loss of KIL1 function extends silk receptivity and thus strongly increases kernel yield following late pollination. This phenotype offers new opportunities for possibly improving yield stability in cereal crops. Moreover, despite diverging flower morphologies and the substantial evolutionary distance between Arabidopsis and maize, our data indicate remarkably similar principles in terminating floral receptivity by PCD, whose modulation offers the potential to be widely used in agriculture.

摘要

植物花朵具有功能性的寿命,在此期间会发生授粉和受精,以确保种子和果实的发育。一旦花朵开始衰老,就不可逆转地失去了结实或结籽的潜力。在玉米中,花丝是从苞叶包裹的花序中伸出的伸长的柱头,用于拦截空气中的花粉。在这里,我们表明 KIRA1-LIKE1(KIL1),拟南芥 NAC(NAM(无顶端分生组织)、ATAF1/2(拟南芥激活因子 1 和 2)和 CUC(杯状子叶 2))转录因子 KIRA1 的同源物,促进花丝基部的衰老和程序性细胞死亡(PCD),从而结束了子房受精的可及窗口。KIL1 功能的丧失延长了花丝的接受能力,因此在后期授粉后大大增加了 kernel 的产量。这种表型为可能提高谷类作物的产量稳定性提供了新的机会。此外,尽管拟南芥和玉米的花形态和进化距离存在显著差异,但我们的数据表明,通过 PCD 终止花的接受能力具有惊人的相似原则,其调节具有在农业中广泛应用的潜力。

相似文献

1
KIL1 terminates fertility in maize by controlling silk senescence.
Plant Cell. 2022 Jul 30;34(8):2852-2870. doi: 10.1093/plcell/koac151.
2
KIRA1 and ORESARA1 terminate flower receptivity by promoting cell death in the stigma of Arabidopsis.
Nat Plants. 2018 Jun;4(6):365-375. doi: 10.1038/s41477-018-0160-7. Epub 2018 May 28.
4
Fertility loss in senescing Arabidopsis ovules is controlled by the maternal sporophyte via a NAC transcription factor triad.
Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2219868120. doi: 10.1073/pnas.2219868120. Epub 2023 Jun 12.
5
Terminator: Maize KIL1 terminates fertility by inducing silk senescence.
Plant Cell. 2022 Jul 30;34(8):2815-2816. doi: 10.1093/plcell/koac152.
6
Maize stigmas react differently to self- and cross-pollination and fungal invasion.
Plant Physiol. 2024 Dec 2;196(4):3071-3090. doi: 10.1093/plphys/kiae536.
7
The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis.
Plant J. 2011 Oct;68(1):168-85. doi: 10.1111/j.1365-313X.2011.04677.x. Epub 2011 Jul 21.
10
Transcriptional and metabolic analysis of senescence induced by preventing pollination in maize.
Plant Physiol. 2012 Aug;159(4):1730-44. doi: 10.1104/pp.112.199224. Epub 2012 Jun 25.

引用本文的文献

2
Fertilization-induced synergid cell death by RALF12-triggered ROS production and ethylene signaling.
Nat Commun. 2025 Mar 29;16(1):3059. doi: 10.1038/s41467-025-58246-y.
3
Maize stigmas react differently to self- and cross-pollination and fungal invasion.
Plant Physiol. 2024 Dec 2;196(4):3071-3090. doi: 10.1093/plphys/kiae536.
4
Heat-stress-induced ROS in maize silks cause late pollen tube growth arrest and sterility.
iScience. 2024 May 22;27(7):110081. doi: 10.1016/j.isci.2024.110081. eCollection 2024 Jul 19.
5
NACs, generalist in plant life.
Plant Biotechnol J. 2023 Dec;21(12):2433-2457. doi: 10.1111/pbi.14161. Epub 2023 Aug 25.
6
From the floret to the canopy: High temperature tolerance during flowering.
Plant Commun. 2023 Nov 13;4(6):100629. doi: 10.1016/j.xplc.2023.100629. Epub 2023 May 23.
8
Terminator: Maize KIL1 terminates fertility by inducing silk senescence.
Plant Cell. 2022 Jul 30;34(8):2815-2816. doi: 10.1093/plcell/koac152.

本文引用的文献

1
Recruitment of an ancient branching program to suppress carpel development in maize flowers.
Proc Natl Acad Sci U S A. 2022 Jan 11;119(2). doi: 10.1073/pnas.2115871119.
4
Maize BIG GRAIN1 homolog overexpression increases maize grain yield.
Plant Biotechnol J. 2020 Nov;18(11):2304-2315. doi: 10.1111/pbi.13392. Epub 2020 Jun 16.
5
Integrated Genome-Scale Analysis Identifies Novel Genes and Networks Underlying Senescence in Maize.
Plant Cell. 2019 Sep;31(9):1968-1989. doi: 10.1105/tpc.18.00930. Epub 2019 Jun 25.
6
Effects of Silk Maturity and Pollination on Infection of Maize Ears by Ustilago maydis.
Plant Dis. 1999 Jul;83(7):621-626. doi: 10.1094/PDIS.1999.83.7.621.
7
Friend or foe: Signaling mechanisms during double fertilization in flowering seed plants.
Curr Top Dev Biol. 2019;131:453-496. doi: 10.1016/bs.ctdb.2018.11.013. Epub 2018 Dec 17.
8
Transcriptional networks orchestrating programmed cell death during plant development.
Curr Top Dev Biol. 2019;131:161-184. doi: 10.1016/bs.ctdb.2018.10.006. Epub 2018 Nov 23.
9
Transcriptional switch for programmed cell death in pith parenchyma of sorghum stems.
Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):E8783-E8792. doi: 10.1073/pnas.1807501115. Epub 2018 Aug 27.
10
KIRA1 and ORESARA1 terminate flower receptivity by promoting cell death in the stigma of Arabidopsis.
Nat Plants. 2018 Jun;4(6):365-375. doi: 10.1038/s41477-018-0160-7. Epub 2018 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验