Suppr超能文献

SiReN:使用图神经网络的信号感知推荐

SiReN: Sign-Aware Recommendation Using Graph Neural Networks.

作者信息

Seo Changwon, Jeong Kyeong-Joong, Lim Sungsu, Shin Won-Yong

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Apr;35(4):4729-4743. doi: 10.1109/TNNLS.2022.3175772. Epub 2024 Apr 4.

Abstract

In recent years, many recommender systems using network embedding (NE) such as graph neural networks (GNNs) have been extensively studied in the sense of improving recommendation accuracy. However, such attempts have focused mostly on utilizing only the information of positive user-item interactions with high ratings. Thus, there is a challenge on how to make use of low rating scores for representing users' preferences since low ratings can be still informative in designing NE-based recommender systems. In this study, we present SiReN, a new Si gn-aware Recommender system based on GNN models. Specifically, SiReN has three key components: 1) constructing a signed bipartite graph for more precisely representing users' preferences, which is split into two edge-disjoint graphs with positive and negative edges each; 2) generating two embeddings for the partitioned graphs with positive and negative edges via a GNN model and a multilayer perceptron (MLP), respectively, and then using an attention model to obtain the final embeddings; and 3) establishing a sign-aware Bayesian personalized ranking (BPR) loss function in the process of optimization. Through comprehensive experiments, we empirically demonstrate that SiReN consistently outperforms state-of-the-art NE-aided recommendation methods.

摘要

近年来,许多使用网络嵌入(NE)的推荐系统,如图神经网络(GNN),在提高推荐准确性方面得到了广泛研究。然而,此类尝试大多只专注于利用高评分的正用户-项目交互信息。因此,如何利用低评分来表示用户偏好是一个挑战,因为在设计基于网络嵌入的推荐系统时,低评分仍可能具有信息价值。在本研究中,我们提出了SiReN,一种基于GNN模型的新型符号感知推荐系统。具体而言,SiReN有三个关键组件:1)构建一个带符号的二分图,以更精确地表示用户偏好,该图被拆分为两个边不相交的图,每个图分别具有正边和负边;2)分别通过GNN模型和多层感知器(MLP)为带正边和负边的划分图生成两个嵌入,然后使用注意力模型获得最终嵌入;3)在优化过程中建立一个符号感知贝叶斯个性化排序(BPR)损失函数。通过全面的实验,我们实证证明SiReN始终优于现有最先进的基于网络嵌入的推荐方法。

相似文献

1
SiReN: Sign-Aware Recommendation Using Graph Neural Networks.
IEEE Trans Neural Netw Learn Syst. 2024 Apr;35(4):4729-4743. doi: 10.1109/TNNLS.2022.3175772. Epub 2024 Apr 4.
2
Multi-Aspect enhanced Graph Neural Networks for recommendation.
Neural Netw. 2023 Jan;157:90-102. doi: 10.1016/j.neunet.2022.10.001. Epub 2022 Oct 14.
3
Graph Intention Embedding Neural Network for tag-aware recommendation.
Neural Netw. 2025 Apr;184:107062. doi: 10.1016/j.neunet.2024.107062. Epub 2024 Dec 20.
4
FIRE: knowledge-enhanced recommendation with feature interaction and intent-aware attention networks.
Appl Intell (Dordr). 2022 Dec 7:1-21. doi: 10.1007/s10489-022-04300-x.
6
User preference interaction fusion and swap attention graph neural network for recommender system.
Neural Netw. 2025 Apr;184:107116. doi: 10.1016/j.neunet.2024.107116. Epub 2025 Jan 4.
7
Status-Aware Signed Heterogeneous Network Embedding With Graph Neural Networks.
IEEE Trans Neural Netw Learn Syst. 2024 Apr;35(4):4580-4592. doi: 10.1109/TNNLS.2022.3151046. Epub 2024 Apr 4.
8
Beyond-accuracy: a review on diversity, serendipity, and fairness in recommender systems based on graph neural networks.
Front Big Data. 2023 Dec 19;6:1251072. doi: 10.3389/fdata.2023.1251072. eCollection 2023.
9
Adaptive multi-graph contrastive learning for bundle recommendation.
Neural Netw. 2025 Jan;181:106832. doi: 10.1016/j.neunet.2024.106832. Epub 2024 Oct 24.
10
ExpGCN: Review-aware Graph Convolution Network for explainable recommendation.
Neural Netw. 2023 Jan;157:202-215. doi: 10.1016/j.neunet.2022.10.014. Epub 2022 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验