Quality and Safety Office, Division of Breast Imaging, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Massachusetts General Hospital, Boston, Massachusetts.
Massachusetts General Hospital, Boston, Massachusetts.
J Am Coll Radiol. 2022 Sep;19(9):1021-1030. doi: 10.1016/j.jacr.2022.04.001. Epub 2022 May 23.
Legislation in 38 states requires patient notification of dense mammographic breast tissue because increased density is a marker of breast cancer risk and can limit mammographic sensitivity. Because radiologist density assessments vary widely, our objective was to implement and measure the impact of a deep learning (DL) model on mammographic breast density assessments in clinical practice.
This institutional review board-approved prospective study identified consecutive screening mammograms performed across three clinical sites over two periods: 2017 period (January 1, 2017, through September 30, 2017) and 2019 period (January 1, 2019, through September 30, 2019). The DL model was implemented at sites A (academic practice) and B (community practice) in 2018 for all screening mammograms. Site C (community practice) was never exposed to the DL model. Prospective densities were evaluated, and multivariable logistic regression models evaluated the odds of a dense mammogram classification as a function of time and site.
We identified 85,124 consecutive screening mammograms across the three sites. Across time intervals, odds of a dense classification decreased at sites exposed to the DL model, site A (adjusted odds ratio [aOR], 0.93; 95% confidence interval [CI], 0.86-0.99; P = .024) and site B (aOR, 0.81 [95% CI, 0.70-0.93]; P = .003), and odds increased at the site unexposed to the model (site C) (aOR, 1.13 [95% CI, 1.01-1.27]; P = .033).
A DL model reduces the odds of screening mammograms categorized as dense. Accurate density assessments could help health care systems more appropriately use limited supplemental screening resources and help better inform traditional clinical risk models.
38 个州的立法要求通知患者致密型乳腺组织,因为乳腺密度增加是乳腺癌风险的一个标志物,并且可能会降低乳房 X 光检查的敏感性。由于放射科医生的密度评估差异很大,我们的目标是在临床实践中实施并衡量深度学习(DL)模型对乳房 X 光检查乳腺密度评估的影响。
这项经过机构审查委员会批准的前瞻性研究在三个临床地点的两个时期内连续筛查乳房 X 光片:2017 年期间(2017 年 1 月 1 日至 2017 年 9 月 30 日)和 2019 年期间(2019 年 1 月 1 日至 2019 年 9 月 30 日)。2018 年,DL 模型在地点 A(学术实践)和 B(社区实践)实施,用于所有筛查乳房 X 光片。地点 C(社区实践)从未接触过 DL 模型。前瞻性评估密度,并使用多变量逻辑回归模型评估时间和地点对致密型乳房 X 光片分类的可能性。
我们在三个地点共确定了 85124 例连续筛查乳房 X 光片。在时间间隔内,暴露于 DL 模型的站点 A(调整后的优势比[aOR],0.93;95%置信区间[CI],0.86-0.99;P =.024)和 B(aOR,0.81 [95% CI,0.70-0.93];P =.003)中,致密分类的可能性降低,而在未暴露于模型的站点 C(aOR,1.13 [95% CI,1.01-1.27];P =.033)中,可能性增加。
DL 模型降低了被归类为致密型的乳房 X 光筛查的可能性。准确的密度评估可以帮助医疗保健系统更恰当地使用有限的补充性筛查资源,并帮助更好地告知传统的临床风险模型。