Kyeremateng Samuel O, Voges Kristin, Dohrn Stefanie, Sobich Ekaterina, Lander Ute, Weber Stefan, Gessner David, Evans Rachel C, Degenhardt Matthias
AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany.
Pharmaceutics. 2022 May 12;14(5):1044. doi: 10.3390/pharmaceutics14051044.
Several literature publications have described the potential application of active pharmaceutical ingredient (API)-polymer phase diagrams to identify appropriate temperature ranges for processing amorphous solid dispersion (ASD) formulations via the hot-melt extrusion (HME) technique. However, systematic investigations and reliable applications of the phase diagram as a risk assessment tool for HME are non-existent. Accordingly, within AbbVie, an HME risk classification system (HCS) based on API-polymer phase diagrams has been developed as a material-sparing tool for the early risk assessment of especially high melting temperature APIs, which are typically considered unsuitable for HME. The essence of the HCS is to provide an API risk categorization framework for the development of ASDs via the HME process. The proposed classification system is based on the recognition that the manufacture of crystal-free ASD using the HME process fundamentally depends on the ability of the melt temperature to reach the API's thermodynamic solubility temperature or above. Furthermore, we explored the API-polymer phase diagram as a simple tool for process design space selection pertaining to API or polymer thermal degradation regions and glass transition temperature-related dissolution kinetics limitations. Application of the HCS was demonstrated via HME experiments with two high melting temperature APIs, sulfamerazine and telmisartan, with the polymers Copovidone and Soluplus. Analysis of the resulting ASDs in terms of the residual crystallinity and degradation showed excellent agreement with the preassigned HCS class. Within AbbVie, the HCS concept has been successfully applied to more than 60 different APIs over the last 8 years as a robust validated risk assessment and quality-by-design (QD) tool for the development of HME ASDs.
一些文献出版物描述了活性药物成分(API)-聚合物相图在确定通过热熔挤出(HME)技术制备无定形固体分散体(ASD)制剂的合适温度范围方面的潜在应用。然而,作为HME风险评估工具的相图的系统研究和可靠应用尚不存在。因此,在艾伯维公司内部,基于API-聚合物相图的HME风险分类系统(HCS)已被开发出来,作为一种节省材料的工具,用于对通常被认为不适合HME的特别高熔点API进行早期风险评估。HCS的本质是为通过HME工艺开发ASD提供一个API风险分类框架。所提出的分类系统基于这样的认识,即使用HME工艺制造无晶体的ASD从根本上取决于熔体温度达到API热力学溶解温度或以上的能力。此外,我们探索了API-聚合物相图,将其作为一个简单工具,用于选择与API或聚合物热降解区域以及玻璃化转变温度相关的溶解动力学限制有关的工艺设计空间。通过使用聚合物共聚维酮和固体分散体用聚乙二醇共聚物对两种高熔点API(磺胺嘧啶和替米沙坦)进行HME实验,证明了HCS的应用。根据残余结晶度和降解情况对所得ASD进行分析,结果与预先指定的HCS类别高度吻合。在艾伯维公司内部,在过去8年中,HCS概念已成功应用于60多种不同的API,作为开发HME ASD的强大验证风险评估和设计质量(QD)工具。