Suppr超能文献

基于机器学习技术和传动系统仿真的风力发电机组虚拟感应输入负载传感器筛选方法。

Sensor Screening Methodology for Virtually Sensing Transmission Input Loads of a Wind Turbine Using Machine Learning Techniques and Drivetrain Simulations.

机构信息

Center for Wind Power Drives, RWTH Aachen University, 52074 Aachen, Germany.

出版信息

Sensors (Basel). 2022 May 11;22(10):3659. doi: 10.3390/s22103659.

Abstract

The ongoing trend of building larger wind turbines (WT) to reach greater economies of scale is contributing to the reduction in cost of wind energy, as well as the increase in WT drivetrain input loads into uncharted territories. The resulting intensification of the load situation within the WT gearbox motivates the need to monitor WT transmission input loads. However, due to the high costs of direct measurement solutions, more economical solutions, such as virtual sensing of transmission input loads using stationary sensors mounted on the gearbox housing or other drivetrain locations, are of interest. As the number, type, and location of sensors needed for a virtual sensing solutions can vary considerably in cost, in this investigation, we aimed to identify optimal sensor locations for virtually sensing WT 6-degree of freedom (6-DOF) transmission input loads. Random forest (RF) models were designed and applied to a dataset containing simulated operational data of a Vestas V52 WT multibody simulation model undergoing simulated wind fields. The dataset contained the 6-DOF transmission input loads and signals from potential sensor locations covering deformations, misalignments, and rotational speeds at various drivetrain locations. The RF models were used to identify the sensor locations with the highest impact on accuracy of virtual load sensing following a known statistical test in order to prioritize and reduce the number of needed input signals. The performance of the models was assessed before and after reducing the number of input signals required. By allowing for a screening of sensors prior to real-world tests, the results demonstrate the high promise of the proposed method for optimizing the cost of future virtual WT transmission load sensors.

摘要

不断增大风力涡轮机 (WT) 以实现更大规模经济的趋势,不仅降低了风能成本,还增加了 WT 传动系统输入负载,使其进入未知领域。WT 变速箱内负载情况的加剧,促使人们需要监测 WT 传动输入负载。然而,由于直接测量解决方案成本高昂,因此更经济的解决方案,如使用安装在变速箱外壳或其他传动系统位置上的静止传感器进行传动输入负载虚拟感测,受到关注。由于虚拟感测解决方案所需的传感器数量、类型和位置的成本差异很大,因此在本研究中,我们旨在确定虚拟感测 WT 6 自由度 (6-DOF) 传动输入负载的最佳传感器位置。设计并应用了随机森林 (RF) 模型,该模型使用了包含 Vestas V52 WT 多体仿真模型的模拟运行数据的数据集,该模型经历了模拟风场。数据集包含了 6-DOF 传动输入负载以及来自各种传动系统位置的潜在传感器位置的变形、不对准和转速信号。RF 模型用于根据已知的统计测试确定对虚拟负载感测精度影响最大的传感器位置,以优先考虑并减少所需输入信号的数量。在减少所需输入信号数量之前和之后,对模型的性能进行了评估。通过在实际测试之前对传感器进行筛选,结果表明,该方法在优化未来虚拟 WT 传动负载传感器的成本方面具有很高的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56f8/9145404/0462bd33b2a6/sensors-22-03659-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验