Suppr超能文献

自动 MS/MS 数据挖掘策略用于发现天然产物靶标:以石菖蒲倍半萜为例。

Automatic MS/MS Data Mining Strategy for Discovering Target Natural Products: A Case of Lindenane Sesquiterpenoids.

机构信息

Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.

出版信息

Anal Chem. 2022 Jun 14;94(23):8514-8522. doi: 10.1021/acs.analchem.2c01559. Epub 2022 May 30.

Abstract

Untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a widely used method for discovering natural products (NPs); however, automatic MS/MS data mining for the discovery of NPs remains a challenge. In this work, LindenaneExtractor, a program based on characteristic MS/MS ions of lindenane sesquiterpenoids (LSs) was developed to automatically extract the LSs features for target LS discovery in plant extracts. To build this program, fragmentation mechanisms of characteristic ions of LSs were elucidated and confirmed by quantum chemical calculation and deuterium-labeled compounds. Subsequently, the information of characteristic ions was integrated and coded to develop LindenaneExtractor, which was further examined by standards and several public databases. Finally, the target LS features in extract were automatically extracted by LindenaneExtractor and visualized by feature-based molecular networking and two-dimensional (2D) retention time-/ plot, leading to the discovery of 96 target LSs in total, 37 of these compounds were potentially new NPs and one was confirmed by further isolation. This work proposed a new strategy for target NP analysis and discovery based on automatic MS/MS data mining, which could significantly improve the efficiency and accuracy of NP discovery.

摘要

非靶向液相色谱-串联质谱(LC-MS/MS)是一种广泛用于发现天然产物(NPs)的方法;然而,用于 NPs 发现的自动 MS/MS 数据挖掘仍然是一个挑战。在这项工作中,基于 LindenaneExtractor 程序开发了一种基于 Lindenane 倍半萜(LSs)特征 MS/MS 离子的程序,用于自动提取 LSs 特征,以在植物提取物中发现目标 LS。为了构建这个程序,阐明了 LS 特征离子的碎裂机制,并通过量子化学计算和氘标记化合物进行了验证。随后,整合和编码了特征离子的信息,开发了 LindenaneExtractor,并通过标准品和几个公共数据库进行了进一步的检查。最后,通过 LindenaneExtractor 自动提取提取物中的目标 LS 特征,并通过基于特征的分子网络和二维(2D)保留时间-/图谱进行可视化,总共发现了 96 个目标 LS,其中 37 个化合物可能是新的 NPs,一个化合物通过进一步分离得到了证实。这项工作提出了一种基于自动 MS/MS 数据挖掘的目标 NP 分析和发现的新策略,可显著提高 NP 发现的效率和准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验