Suppr超能文献

色满酮衍生物作为治疗与视网膜色素变性相关的视紫红质突变体的新型药理学伴侣。

Chromenone derivatives as novel pharmacological chaperones for retinitis pigmentosa-linked rod opsin mutants.

机构信息

Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.

Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405-7102, USA.

出版信息

Hum Mol Genet. 2022 Oct 10;31(20):3439-3457. doi: 10.1093/hmg/ddac125.

Abstract

The correct expression of folded, functional rhodopsin (Rho) is critical for visual perception. However, this seven-transmembrane helical G protein-coupled receptor is prone to mutations with pathological consequences of retinal degeneration in retinitis pigmentosa (RP) due to Rho misfolding. Pharmacological chaperones that stabilize the inherited Rho variants by assisting their folding and membrane targeting could slow the progression of RP. In this study, we employed virtual screening of synthetic compounds with a natural product scaffold in conjunction with in vitro and in vivo evaluations to discover a novel chromenone-containing small molecule with favorable pharmacological properties that stabilize rod opsin. This compound reversibly binds to unliganded bovine rod opsin with an EC50 value comparable to the 9-cis-retinal chromophore analog and partially rescued membrane trafficking of multiple RP-related rod opsin variants in vitro. Importantly, this novel ligand of rod opsin was effective in vivo in murine models, protecting photoreceptors from deterioration caused by either bright light or genetic insult. Together, our current study suggests potential broad therapeutic implications of the new chromenone-containing non-retinoid small molecule against retinal diseases associated with photoreceptor degeneration.

摘要

正确表达折叠、功能正常的视紫红质(Rho)对于视觉感知至关重要。然而,由于 Rho 错误折叠,这种七次跨膜螺旋 G 蛋白偶联受体容易发生突变,导致色素性视网膜炎(RP)中的视网膜变性。通过协助 Rho 折叠和靶向膜来稳定遗传 Rho 变体的药理学伴侣可以减缓 RP 的进展。在这项研究中,我们采用了天然产物骨架的合成化合物的虚拟筛选,并结合体外和体内评估,发现了一种新型含色烯酮的小分子,具有稳定视杆蛋白的良好药理特性。该化合物可与非配体结合的牛视杆蛋白可逆结合,EC50 值与 9-顺式视黄醛类似物相当,并部分恢复了多种与 RP 相关的视杆蛋白变体在体外的膜运输。重要的是,这种新型视杆蛋白配体在体内的小鼠模型中是有效的,可保护感光细胞免受强光或遗传损伤引起的恶化。总之,我们目前的研究表明,新型含色烯酮的非类视黄醇小分子对与感光细胞变性相关的视网膜疾病具有广泛的治疗潜力。

相似文献

2
A novel small molecule chaperone of rod opsin and its potential therapy for retinal degeneration.
Nat Commun. 2018 May 17;9(1):1976. doi: 10.1038/s41467-018-04261-1.
3
P23H opsin knock-in mice reveal a novel step in retinal rod disc morphogenesis.
Hum Mol Genet. 2014 Apr 1;23(7):1723-41. doi: 10.1093/hmg/ddt561. Epub 2013 Nov 7.
4
Flavonoids improve the stability and function of P23H rhodopsin slowing down the progression of retinitis pigmentosa in mice.
J Neurosci Res. 2022 Apr;100(4):1063-1083. doi: 10.1002/jnr.25021. Epub 2022 Feb 15.
5
A naturally occurring mutation of the opsin gene (T4R) in dogs affects glycosylation and stability of the G protein-coupled receptor.
J Biol Chem. 2004 Dec 17;279(51):53828-39. doi: 10.1074/jbc.M408472200. Epub 2004 Sep 30.
6
Molecular mechanisms of rhodopsin retinitis pigmentosa and the efficacy of pharmacological rescue.
J Mol Biol. 2010 Feb 5;395(5):1063-78. doi: 10.1016/j.jmb.2009.11.015. Epub 2009 Nov 11.
8
Structural aspects of rod opsin and their implication in genetic diseases.
Pflugers Arch. 2021 Sep;473(9):1339-1359. doi: 10.1007/s00424-021-02546-x. Epub 2021 Mar 16.
9
Pharmacological manipulation of gain-of-function and dominant-negative mechanisms in rhodopsin retinitis pigmentosa.
Hum Mol Genet. 2008 Oct 1;17(19):3043-54. doi: 10.1093/hmg/ddn202. Epub 2008 Jul 17.
10
Inherent instability of the retinitis pigmentosa P23H mutant opsin.
J Biol Chem. 2014 Mar 28;289(13):9288-303. doi: 10.1074/jbc.M114.551713. Epub 2014 Feb 10.

引用本文的文献

1
Unifying perspectives on the activity and genotypic targeting of pharmacological chaperones.
J Biol Chem. 2025 Jun 18;301(7):110375. doi: 10.1016/j.jbc.2025.110375.
2
Mutant protein chemical rescue: From mechanisms to therapeutics.
J Biol Chem. 2025 Apr;301(4):108417. doi: 10.1016/j.jbc.2025.108417. Epub 2025 Mar 18.
3
Discovery of non-retinoid compounds that suppress the pathogenic effects of misfolded rhodopsin in a mouse model of retinitis pigmentosa.
PLoS Biol. 2025 Jan 14;23(1):e3002932. doi: 10.1371/journal.pbio.3002932. eCollection 2025 Jan.
5
Aggregation of rhodopsin mutants in mouse models of autosomal dominant retinitis pigmentosa.
Nat Commun. 2024 Feb 16;15(1):1451. doi: 10.1038/s41467-024-45748-4.
6
Galanin receptor 3 - A new pharmacological target in retina degeneration.
Pharmacol Res. 2023 Feb;188:106675. doi: 10.1016/j.phrs.2023.106675. Epub 2023 Jan 21.

本文引用的文献

1
Molecular basis for variations in the sensitivity of pathogenic rhodopsin variants to 9-cis-retinal.
J Biol Chem. 2022 Aug;298(8):102266. doi: 10.1016/j.jbc.2022.102266. Epub 2022 Jul 16.
2
FRET sensors reveal the retinal entry pathway in the G protein-coupled receptor rhodopsin.
iScience. 2022 Mar 11;25(4):104060. doi: 10.1016/j.isci.2022.104060. eCollection 2022 Apr 15.
3
Flavonoids improve the stability and function of P23H rhodopsin slowing down the progression of retinitis pigmentosa in mice.
J Neurosci Res. 2022 Apr;100(4):1063-1083. doi: 10.1002/jnr.25021. Epub 2022 Feb 15.
4
Rhodopsin as a Molecular Target to Mitigate Retinitis Pigmentosa.
Adv Exp Med Biol. 2022;1371:61-77. doi: 10.1007/5584_2021_682.
5
Systematic profiling of temperature- and retinal-sensitive rhodopsin variants by deep mutational scanning.
J Biol Chem. 2021 Dec;297(6):101359. doi: 10.1016/j.jbc.2021.101359. Epub 2021 Oct 29.
6
Structural aspects of rod opsin and their implication in genetic diseases.
Pflugers Arch. 2021 Sep;473(9):1339-1359. doi: 10.1007/s00424-021-02546-x. Epub 2021 Mar 16.
7
Protective Effects of Flavonoids in Acute Models of Light-Induced Retinal Degeneration.
Mol Pharmacol. 2021 Jan;99(1):60-77. doi: 10.1124/molpharm.120.000072. Epub 2020 Nov 5.
9
Probing biophysical sequence constraints within the transmembrane domains of rhodopsin by deep mutational scanning.
Sci Adv. 2020 Mar 4;6(10):eaay7505. doi: 10.1126/sciadv.aay7505. eCollection 2020 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验