Suppr超能文献

概率力估计与事件定位(PFEEL)算法

Probabilistic Force Estimation and Event Localization (PFEEL) algorithm.

作者信息

MejiaCruz Yohanna, Jiang Zhaoshuo, Caicedo Juan M, Franco Jean M

机构信息

San Francisco State University, 1600 Holloway Ave, San Francisco, CA 94132, United States.

University of South Carolina, Columbia SC, 29208, United States.

出版信息

Eng Struct. 2022 Feb 1;252. doi: 10.1016/j.engstruct.2021.113535. Epub 2021 Nov 17.

Abstract

Localization of human activity using floor vibrations has gained attention in recent years. In human health technologies, floor vibrations have been recently used to estimate gait parameters to predict a patients' health status. Various methodologies such as using the characteristics of wave traveling (algorithms based on time of arrival) or the properties of structures (Force Estimation and Event Localization, FEEL, algorithm) have been investigated to localize the impact, fall, or step events. This paper presents a probabilistic approach that builds upon the FEEL algorithm to offer the advantage of eliminating the need for a robust experimental setup. The proposed Probabilistic Force Estimation and Event Localization (PFEEL) algorithm provides a probabilistic measure to an event's force estimation and localization using random variables associated with the floor's dynamics. The algorithm can also guide calibration by identifying calibration points that provide the maximum information. This reduces the number of calibration points needed, which has practical benefits during the implementation. In this manuscript, we presented the design, development, and validation of the algorithm.

摘要

近年来,利用地板振动进行人类活动定位受到了关注。在人类健康技术领域,地板振动最近已被用于估计步态参数,以预测患者的健康状况。人们研究了各种方法,如利用波传播的特性(基于到达时间的算法)或结构的特性(力估计与事件定位,FEEL算法)来定位撞击、跌倒或脚步事件。本文提出了一种概率方法,该方法基于FEEL算法构建,具有无需强大实验设置的优势。所提出的概率力估计与事件定位(PFEEL)算法使用与地板动态相关的随机变量,为事件的力估计和定位提供概率度量。该算法还可以通过识别提供最大信息的校准点来指导校准。这减少了所需校准点的数量,在实施过程中具有实际益处。在本手稿中,我们介绍了该算法的设计、开发和验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cff2/9138175/ec16958d27fd/nihms-1805348-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验