Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States.
Yale Quantum Institute, Yale University, P.O. Box 208334, New Haven, Connecticut 06520-8263, United States.
J Chem Theory Comput. 2022 Jun 14;18(6):3327-3346. doi: 10.1021/acs.jctc.2c00209. Epub 2022 Jun 1.
Numerically exact simulations of quantum reaction dynamics, including nonadiabatic effects in excited electronic states, are essential to gain fundamental insights into ultrafast chemical reactivity and rigorous interpretations of molecular spectroscopy. Here, we introduce the tensor-train split-operator KSL (TT-SOKSL) method for quantum simulations in tensor-train (TT)/matrix product state (MPS) representations. TT-SOKSL propagates the quantum state as a tensor train using the Trotter expansion of the time-evolution operator, as in the tensor-train split-operator Fourier transform (TT-SOFT) method. However, the exponential operators of the Trotter expansion are applied using a rank-adaptive TT-KSL scheme instead of using the scaling and squaring approach as in TT-SOFT. We demonstrate the accuracy and efficiency of TT-SOKSL as applied to simulations of the photoisomerization of the retinal chromophore in rhodopsin, including nonadiabatic dynamics at a conical intersection of potential energy surfaces. The quantum evolution is described in full dimensionality by a time-dependent wavepacket evolving according to a two-state 25-dimensional model Hamiltonian. We find that TT-SOKSL converges faster than TT-SOFT with respect to the maximally allowed memory requirement of the tensor-train representation and better preserves the norm of the time-evolving state. When compared to the corresponding simulations based on the TT-KSL method, TT-SOKSL has the advantage of avoiding the need to construct the matrix product state Laplacian by exploiting the linear scaling of multidimensional tensor-train Fourier transforms.
数值精确模拟量子反应动力学,包括激发电子态中的非绝热效应,对于深入了解超快化学反应性和分子光谱的严格解释至关重要。在这里,我们引入张量-张量分裂算子 KSL(TT-SOKSL)方法,用于张量-张量(TT)/矩阵乘积态(MPS)表示中的量子模拟。TT-SOKSL 通过时间演化算子的 Trotter 展开将量子态作为张量张量传播,就像在张量-张量分裂算子傅里叶变换(TT-SOFT)方法中一样。然而,Trotter 展开的指数算子使用秩自适应 TT-KSL 方案应用,而不是像 TT-SOFT 中那样使用缩放和平方方法。我们展示了 TT-SOKSL 在模拟视紫红质中视黄醛光致异构化中的准确性和效率,包括势能面锥交叉处的非绝热动力学。量子演化是通过根据两态 25 维模型哈密顿量随时间演化的时变波包来描述的。我们发现,与 TT-SOFT 相比,TT-SOKSL 具有更快的收敛速度,因为它相对于张量张量表示的最大允许存储要求,并更好地保持了时间演化状态的范数。与基于 TT-KSL 方法的相应模拟相比,TT-SOKSL 的优点是避免了通过利用多维张量-张量傅里叶变换的线性缩放来构建矩阵乘积状态拉普拉斯算子的需要。