Zhou Jiang
Department of Physics, Guizhou University, Guiyang 550025, People's Republic of China.
J Phys Condens Matter. 2022 Jun 15;34(32). doi: 10.1088/1361-648X/ac75a0.
Emergent symmetry in Dirac system means that the system acquires an enlargement of two basic symmetries at some special critical point. The continuous quantum criticality between the two symmetry broken phases can be described within the framework of Gross-Neveu-Yukawa (GNY) model. Using the first-orderexpansion in4-ϵdimensions, we study the critical structure and emergent symmetry of the()-GNY model withflavors of four-component Dirac fermions coupled strongly to an() scalar field under a small()-symmetry breaking perturbation. After determining the stable fixed point, we calculate the inverse correlation length exponent and the anomalous dimensions (bosonic and fermionic) for generaland. Further, we discuss the emergent-symmetry and the emergent supersymmetric critical point forN⩾4on the basis of()-GNY model. It turns out that the()-GNY universality class is physically meaningful if and only ifN<2Nf+4. On this premise, the small()-symmetry breaking perturbation is always irrelevant in the()-GNY universality class. Our studies show that the emergent symmetry in Dirac systems has an upper limitO(2Nf+3), depending on the flavor numbers. As a result, the emergent-(4) and(5) symmetries are possible to be found in Dirac systems with fermion flavorNf=1, and the emergent-(4),(5),(6) and(7) symmetries are expected to be found in the systems with fermion flavorNf=2. Our result suggests some richer transitions with emergent-Z2×O(2)×O(3)symmetry, and so on. Interestingly, in the(4)-GNY universality class, we find that there is a new supersymmetric critical point which is expected to be found in Dirac systems with fermion flavorNf=1.
狄拉克系统中的涌现对称性意味着该系统在某些特殊临界点获得了两种基本对称性的扩展。两个对称破缺相之间的连续量子临界性可以在格罗斯 - 内夫 - 汤川(GNY)模型的框架内进行描述。利用(4 - \epsilon)维的一阶展开,我们研究了在小(\epsilon)对称破缺扰动下,具有四分量狄拉克费米子味且与(\epsilon)标量场强耦合的((\epsilon))-GNY模型的临界结构和涌现对称性。确定稳定不动点后,我们计算了一般(\epsilon)和(N_f)时的逆关联长度指数以及反常维度(玻色子和费米子的)。此外,我们基于((\epsilon))-GNY模型讨论了(N\geqslant4)时的涌现对称性和涌现超对称临界点。结果表明,当且仅当(N < 2N_f + 4)时,((\epsilon))-GNY普适类才具有物理意义。在此前提下,小(\epsilon)对称破缺扰动在((\epsilon))-GNY普适类中总是无关紧要的。我们的研究表明,狄拉克系统中的涌现对称性有一个上限(O(2N_f + 3)),这取决于味数。因此,在费米子味(N_f = 1)的狄拉克系统中可能会发现涌现的(O(4))和(O(5))对称性,而在费米子味(N_f = 2)的系统中预计会发现涌现的(O(4))、(O(5))、(O(6))和(O(7))对称性。我们的结果表明存在一些具有更丰富转变的情况,例如涌现(Z_2×O(2)×O(3))对称性等。有趣的是,在(O(4))-GNY普适类中,我们发现存在一个新的超对称临界点,预计在费米子味(N_f = 1)的狄拉克系统中会出现。