Wang Zhuokai, Zhang Mingmei, Song Zixiang, Yaseen Maria, Huang Zhiye, Wang An, Guisheng Zhu, Shao Shouyan
School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
J Colloid Interface Sci. 2022 Oct 15;624:88-99. doi: 10.1016/j.jcis.2022.05.094. Epub 2022 May 19.
Designing highly efficient, long-lasting, and cost-effective cathodic and anodic functional materials as a bifunctional electrocatalyst is essential for overcoming the bottleneck in fuel cell development. Herein, a novel two-step synthesis strategy is developed to synthesize metal-organic framework (MOF) derived nitrogen-doped carbon (NC) with improved spatial isolation and a higher loading amount of cobalt (Co) and nickel carbide (NiC) nanocrystal decorated on graphene (denoted as Co@NC-NiC/G). Benefiting from multiple active sites of high N-doping level, uniform dispersion of Co and NiC nanocrystals, and a large active area of graphene, the Co@NC-NiC/G hybrids exhibit excellent methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) efficiency in an alkaline environment. For MOR, the optimized Co@NC-NiC/G-350 catalyst achieved a current density of 44.8 mA cm at an applied potential of 1.47 V (V vs. RHE), which is significantly higher than Co@NC-NiC (42.07 mA cm) and Co@NC (24.1 mA cm) in 0.5 M methanol + 1.0 M KOH solutions. In addition, during the CO retention test, the Co@NC-NiC/G-350 catalyst exhibits excellent CO tolerance capacity. Excitingly, the as-prepared Co@NC-NiC/G-350 hybrid exhibits significantly improved ORR catalytic efficiency in terms of positive onset and half-wave potential (E = 0.90 V, E = 0.830 V vs. RHE), small Tafel slope (34 mV dec) and excellent durability (only reduced 0.016 V after 5000 s test). This work provides new insights into MOF-derived functional nanomaterials for anode and cathode co-catalysts for methanol fuel cells.
设计高效、持久且经济高效的阴极和阳极功能材料作为双功能电催化剂对于克服燃料电池发展的瓶颈至关重要。在此,开发了一种新颖的两步合成策略来合成金属有机框架(MOF)衍生的氮掺杂碳(NC),其具有改善的空间隔离以及负载在石墨烯上的更高含量的钴(Co)和碳化镍(NiC)纳米晶体(表示为Co@NC-NiC/G)。受益于高氮掺杂水平的多个活性位点、Co和NiC纳米晶体的均匀分散以及石墨烯的大活性面积,Co@NC-NiC/G杂化物在碱性环境中表现出优异的甲醇氧化反应(MOR)和氧还原反应(ORR)效率。对于MOR,优化后的Co@NC-NiC/G-350催化剂在1.47 V(相对于可逆氢电极,V vs. RHE)的施加电位下实现了44.8 mA cm的电流密度,这在0.5 M甲醇 + 1.0 M KOH溶液中显著高于Co@NC-NiC(42.07 mA cm)和Co@NC(24.1 mA cm)。此外,在CO保留测试期间,Co@NC-NiC/G-350催化剂表现出优异的CO耐受能力。令人兴奋的是,所制备的Co@NC-NiC/G-350杂化物在正向起始和半波电位方面表现出显著提高的ORR催化效率(E = 0.90 V,E = 0.830 V vs. RHE)、小的塔菲尔斜率(34 mV dec)和优异的耐久性(在5000 s测试后仅降低0.016 V)。这项工作为用于甲醇燃料电池的阳极和阴极共催化剂的MOF衍生功能纳米材料提供了新的见解。