Suppr超能文献

基于棕榈生物柴油的柴油机性能和排放的人工神经网络预测。

Artificial neural network prediction of performance and emissions of a diesel engine fueled with palm biodiesel.

机构信息

Department of Mechanical Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Alkharj, 16273, Saudi Arabia.

Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt.

出版信息

Sci Rep. 2022 Jun 3;12(1):9286. doi: 10.1038/s41598-022-13413-9.

Abstract

Increasing of energy consumption, depletion of petroleum fuels and harmful emissions have triggered the interest to find substitute fuels for diesel engines. Palm ethyl ester was synthesized from palm oil through transesterification process. The physicochemical properties of palm biodiesel have been measured and confirmed in accordance with ASTM standards. The aim of the paper is to show the effect of different diesel-palm biodiesel blends on performance, combustion and emissions in diesel engine at engine load variation. Artificial Neural Network was used for the prediction of engine performance, exhaust emission and combustion characteristics parameters. Palm ethyl ester and diesel oil were blended in 5, 10, 15 and 20 by volume percentage. The maximum decreases in thermal efficiency, fuel-air equivalence ratio for B20 were 1.5, 3.5, 6 and 8% but the maximum increases in BSFC, exhaust gas temperature and NO emission for B20 at full load about diesel fuel were 9, 8 and 10%, respectively. The highest decreases in CO, HC and smoke emissions of B20 about diesel oil at full load were 2, 35 and 18.5% at full load, respectively. Biodiesel blend B20 achieved the maximum declines in peak HRR, cylinder temperature and combustion duration about diesel fuel. The results of ANN were compared with experimental results and showed that ANN is effective modeling method with high accuracy. Palm biodiesel blends up to 20% showed the highest enhancements in engine performance, combustion and emission reductions compared to diesel fuel.

摘要

能源消耗的增加、石油燃料的枯竭和有害排放物的排放激发了人们寻找柴油发动机替代燃料的兴趣。棕榈乙基酯是通过酯交换过程从棕榈油合成的。棕榈生物柴油的物理化学性质已按照 ASTM 标准进行了测量和确认。本文的目的是展示不同的柴油-棕榈生物柴油混合物在发动机负荷变化时对柴油机性能、燃烧和排放的影响。人工神经网络用于预测发动机性能、排放和燃烧特性参数。棕榈乙基酯和柴油以 5、10、15 和 20 的体积百分比混合。B20 的热效率和燃料-空气当量比的最大降幅分别为 1.5、3.5、6 和 8%,但在全负荷下 B20 的 BSFC、废气温度和 NO 排放的最大增幅分别为 9、8 和 10%,与柴油相比。B20 在全负荷下的 CO、HC 和烟度排放的最大降幅分别为 2、35 和 18.5%。生物柴油混合物 B20 在峰值 HRR、缸体温度和燃烧持续时间方面达到了相对于柴油燃料的最大下降。ANN 的结果与实验结果进行了比较,结果表明 ANN 是一种具有高精度的有效建模方法。与柴油相比,高达 20%的棕榈生物柴油混合物在提高发动机性能、燃烧和减少排放方面表现出最高的提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a99/9166749/7b1fa0391aec/41598_2022_13413_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验