Kuhnke Louis Maximilian, Rehfeld Johanna Sophie, Ude Christian, Beutel Sascha
Institute of Technical Chemistry Gottfried-Wilhelm-Leibniz Universität Hannover Hannover Germany.
Eng Life Sci. 2022 Mar 18;22(6):440-452. doi: 10.1002/elsc.202100131. eCollection 2022 Jun.
Integrating optical sensors and 3D-printed optics into single-use (SU) cultivation vessels for customized, tailor-made equipment could be a next big step in the bioreactor and screening platform development enabling online bioprocess monitoring. Many different parameters such as pH, oxygen, carbon dioxide and optical density (OD) can be monitored more easily using online measuring instruments compared to offline sampling. Space-saving integrated sensors in combination with adapted optics such as prisms open up vastly new possibilities to precisely guide light through SU vessels. This study examines how optical prisms can be 3D-printed with a 3D-inkjet printer, modified and then evaluated in a custom made optical bench. The prisms are coated or bonded with thin cover glasses. For the examination of reflectance performance and conformity prisms are compared on the basis of measured characteristics of a conventional glass prism. In addition, the most efficient and reproducible prism geometry and modification technique is applied to a customized 3D-printed cultivation vessel. The vessel is evaluated on a commercial sensor-platform, a shake flask reader (SFR) vario, to investigate its sensing-characteristics while monitoring scattered light with the turbidity standard formazine and a cell suspension of as model organism. It is demonstrated that 3D-printed prisms can be used in combination with commercial scattered light sensor-platforms to determine OD of a microbial culture and that a 3D-printed unibody design with integrated optics in a cultivation vessel is feasible. In the range of OD 0-1.16 rel.AU a linear correlation between sensor amplitude and offline determined OD can be achieved. Thus, enabling for the first time a measurement of low cell densities with the SFR vario platform. Moreover, sensitivity is also at least three times higher compared to the commonly used method.
将光学传感器和3D打印光学元件集成到一次性(SU)培养容器中,以制造定制化、量身定制的设备,这可能是生物反应器和筛选平台发展中的下一个重要步骤,能够实现生物过程的在线监测。与离线采样相比,使用在线测量仪器可以更轻松地监测许多不同参数,如pH值、氧气、二氧化碳和光密度(OD)。节省空间的集成传感器与适配的光学元件(如棱镜)相结合,为精确引导光线穿过SU容器开辟了全新的可能性。本研究探讨了如何使用3D喷墨打印机3D打印光学棱镜,对其进行修改,然后在定制的光学平台上进行评估。这些棱镜用薄盖玻片进行涂层或粘结。为了检查反射性能和一致性,根据传统玻璃棱镜的测量特性对棱镜进行比较。此外,将最有效且可重复的棱镜几何形状和修改技术应用于定制的3D打印培养容器。在商业传感器平台——摇瓶读数器(SFR)vario上对该容器进行评估,以研究其传感特性,同时用浊度标准福尔马肼和作为模式生物的细胞悬液监测散射光。结果表明,3D打印棱镜可与商业散射光传感器平台结合使用,以测定微生物培养物的OD,并且在培养容器中集成光学元件的3D打印一体式设计是可行的。在OD 0 - 1.16 rel.AU范围内,可实现传感器振幅与离线测定的OD之间的线性相关性。因此,首次能够使用SFR vario平台测量低细胞密度。此外,与常用方法相比,灵敏度至少高出三倍。