Suppr超能文献

可推广的长期新冠病毒感染亚型:美国国立卫生研究院N3C和RECOVER项目的研究结果。

Generalizable Long COVID Subtypes: Findings from the NIH N3C and RECOVER Programs.

作者信息

Reese Justin T, Blau Hannah, Bergquist Timothy, Loomba Johanna J, Callahan Tiffany, Laraway Bryan, Antonescu Corneliu, Casiraghi Elena, Coleman Ben, Gargano Michael, Wilkins Kenneth J, Cappelletti Luca, Fontana Tommaso, Ammar Nariman, Antony Blessy, Murali T M, Karlebach Guy, McMurry Julie A, Williams Andrew, Moffitt Richard, Banerjee Jineta, Solomonides Anthony E, Davis Hannah, Kostka Kristin, Valentini Giorgio, Sahner David, Chute Christopher G, Madlock-Brown Charisse, Haendel Melissa A, Robinson Peter N

出版信息

medRxiv. 2022 Jul 20:2022.05.24.22275398. doi: 10.1101/2022.05.24.22275398.

Abstract

Accurate stratification of patients with post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) would allow precision clinical management strategies. However, the natural history of long COVID is incompletely understood and characterized by an extremely wide range of manifestations that are difficult to analyze computationally. In addition, the generalizability of machine learning classification of COVID-19 clinical outcomes has rarely been tested. We present a method for computationally modeling PASC phenotype data based on electronic healthcare records (EHRs) and for assessing pairwise phenotypic similarity between patients using semantic similarity. Our approach defines a nonlinear similarity function that maps from a feature space of phenotypic abnormalities to a matrix of pairwise patient similarity that can be clustered using unsupervised machine learning procedures. Using k-means clustering of this similarity matrix, we found six distinct clusters of PASC patients, each with distinct profiles of phenotypic abnormalities. There was a significant association of cluster membership with a range of pre-existing conditions and with measures of severity during acute COVID-19. Two of the clusters were associated with severe manifestations and displayed increased mortality. We assigned new patients from other healthcare centers to one of the six clusters on the basis of maximum semantic similarity to the original patients. We show that the identified clusters were generalizable across different hospital systems and that the increased mortality rate was consistently observed in two of the clusters. Semantic phenotypic clustering can provide a foundation for assigning patients to stratified subgroups for natural history or therapy studies on PASC.

摘要

对新冠病毒感染后急性后遗症(PASC,即长期新冠)患者进行准确分层,将有助于制定精准的临床管理策略。然而,长期新冠的自然病史尚未完全明了,其表现形式极为广泛,难以通过计算进行分析。此外,新冠临床结局的机器学习分类的可推广性很少得到检验。我们提出了一种基于电子健康记录(EHR)对PASC表型数据进行计算建模的方法,并使用语义相似性评估患者之间的成对表型相似性。我们的方法定义了一个非线性相似性函数,该函数从表型异常的特征空间映射到成对患者相似性矩阵,可使用无监督机器学习程序进行聚类。通过对该相似性矩阵进行k均值聚类,我们发现了六个不同的PASC患者集群,每个集群都有独特的表型异常特征。集群成员与一系列既往疾病以及急性新冠期间的严重程度指标之间存在显著关联。其中两个集群与严重表现相关,且死亡率增加。我们根据与原始患者的最大语义相似性,将来自其他医疗中心的新患者分配到六个集群之一。我们表明,所识别的集群在不同医院系统中具有可推广性,并且在其中两个集群中始终观察到死亡率增加。语义表型聚类可为将患者分配到分层亚组以进行PASC的自然病史或治疗研究提供基础。

相似文献

6
Characterizing Long COVID: Deep Phenotype of a Complex Condition.长新冠的特征:复杂病症的深度表型。
EBioMedicine. 2021 Dec;74:103722. doi: 10.1016/j.ebiom.2021.103722. Epub 2021 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验