Suppr超能文献

分枝杆菌丝氨酸/苏氨酸磷酸酶 PstP 受磷酸化调节并定位于细胞中,以介导细胞壁代谢的调控。

Mycobacterial serine/threonine phosphatase PstP is phosphoregulated and localized to mediate control of cell wall metabolism.

机构信息

Department of Biology, University of Texas at Arlington, Arlington, Texas, USA.

Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA.

出版信息

Mol Microbiol. 2022 Jul;118(1-2):47-60. doi: 10.1111/mmi.14951. Epub 2022 Jun 20.

Abstract

The mycobacterial cell wall is profoundly regulated in response to environmental stresses, and this regulation contributes to antibiotic tolerance. The reversible phosphorylation of different cell wall regulatory proteins is a major mechanism of cell wall regulation. Eleven serine/threonine protein kinases phosphorylate many critical cell wall-related proteins in mycobacteria. PstP is the sole serine/ threonine phosphatase, but few proteins have been verified as PstP substrates. PstP is itself phosphorylated, but the role of its phosphorylation in regulating its activity has been unclear. In this study, we aim to discover novel substrates of PstP in Mycobacterium tuberculosis (Mtb). We show in vitro that PstP dephosphorylates two regulators of peptidoglycan in Mtb, FhaA, and Wag31. We also show that a phosphomimetic mutation of T137 on PstP negatively regulates its catalytic activity against the cell wall regulators FhaA, Wag31, CwlM, PknB, and PknA, and that the corresponding mutation in Mycobacterium smegmatis causes misregulation of peptidoglycan in vivo. We show that PstP is localized to the septum, which likely restricts its access to certain substrates. These findings on the regulation of PstP provide insight into the control of cell wall metabolism in mycobacteria.

摘要

分枝杆菌的细胞壁会根据环境压力进行深度调节,这种调节有助于抗生素耐药性的产生。不同细胞壁调节蛋白的可逆磷酸化是细胞壁调节的主要机制。十一种丝氨酸/苏氨酸蛋白激酶磷酸化许多分枝杆菌中与细胞壁相关的关键蛋白。PstP 是唯一的丝氨酸/苏氨酸磷酸酶,但很少有蛋白质被证实是 PstP 的底物。PstP 本身被磷酸化,但磷酸化对其活性的调节作用尚不清楚。在这项研究中,我们旨在发现结核分枝杆菌(Mtb)中 PstP 的新底物。我们在体外证明 PstP 可使 Mtb 中两种肽聚糖调节因子 FhaA 和 Wag31 去磷酸化。我们还表明,PstP 上 T137 位的磷酸模拟突变负调控其对细胞壁调节因子 FhaA、Wag31、CwlM、PknB 和 PknA 的催化活性,而 Mycobacterium smegmatis 中的相应突变导致肽聚糖在体内的错误调节。我们表明 PstP 定位于隔膜,这可能限制了它对某些底物的作用。这些关于 PstP 调节的发现为理解分枝杆菌细胞壁代谢的控制提供了线索。

相似文献

4
Serine/Threonine Protein Phosphatase PstP of Mycobacterium tuberculosis Is Necessary for Accurate Cell Division and Survival of Pathogen.
J Biol Chem. 2016 Nov 11;291(46):24215-24230. doi: 10.1074/jbc.M116.754531. Epub 2016 Oct 7.
6
Phosphorylation of Mycobacterium tuberculosis Ser/Thr phosphatase by PknA and PknB.
PLoS One. 2011 Mar 9;6(3):e17871. doi: 10.1371/journal.pone.0017871.
9
Phosphoprotein phosphatase of Mycobacterium tuberculosis dephosphorylates serine-threonine kinases PknA and PknB.
Biochem Biophys Res Commun. 2003 Nov 7;311(1):112-20. doi: 10.1016/j.bbrc.2003.09.173.
10
Global discovery the PstP interactions using Mtb proteome microarray and revealing novel connections with EthR.
J Proteomics. 2020 Mar 20;215:103650. doi: 10.1016/j.jprot.2020.103650. Epub 2020 Jan 17.

引用本文的文献

1
Regulation of bacterial phosphorelay systems.
RSC Chem Biol. 2025 Jun 19. doi: 10.1039/d5cb00016e.
2
Evolution and classification of Ser/Thr phosphatase PP2C family in bacteria: Sequence conservation, structures, domain distribution.
PLoS One. 2025 May 19;20(5):e0322880. doi: 10.1371/journal.pone.0322880. eCollection 2025.
3
Transposon sequencing reveals metabolic pathways essential for Mycobacterium tuberculosis infection.
PLoS Pathog. 2024 Mar 18;20(3):e1011663. doi: 10.1371/journal.ppat.1011663. eCollection 2024 Mar.
4
Spatial segregation and aging of metabolic processes underlie phenotypic heterogeneity in mycobacteria.
bioRxiv. 2023 Dec 2:2023.12.01.569614. doi: 10.1101/2023.12.01.569614.
5
Polar protein Wag31 both activates and inhibits cell wall metabolism at the poles and septum.
Front Microbiol. 2023 Jan 12;13:1085918. doi: 10.3389/fmicb.2022.1085918. eCollection 2022.
6
The Role of Phosphorylation and Acylation in the Regulation of Drug Resistance in .
Biomedicines. 2022 Oct 15;10(10):2592. doi: 10.3390/biomedicines10102592.

本文引用的文献

1
Synthesis and recycling of the mycobacterial cell envelope.
Curr Opin Microbiol. 2021 Apr;60:58-65. doi: 10.1016/j.mib.2021.01.012. Epub 2021 Feb 18.
3
Antibiotics and resistance: the two-sided coin of the mycobacterial cell wall.
Cell Surf. 2020 Sep 2;6:100044. doi: 10.1016/j.tcsw.2020.100044. eCollection 2020 Dec.
4
Cell-Cycle-Associated Expression Patterns Predict Gene Function in Mycobacteria.
Curr Biol. 2020 Oct 19;30(20):3961-3971.e6. doi: 10.1016/j.cub.2020.07.070. Epub 2020 Sep 10.
5
The protein kinase PknB negatively regulates biosynthesis and trafficking of mycolic acids in mycobacteria.
J Lipid Res. 2020 Aug;61(8):1180-1191. doi: 10.1194/jlr.RA120000747. Epub 2020 Jun 2.
6
A biphasic growth model for cell pole elongation in mycobacteria.
Nat Commun. 2020 Jan 23;11(1):452. doi: 10.1038/s41467-019-14088-z.
7
The mycobacterial cell envelope - a moving target.
Nat Rev Microbiol. 2020 Jan;18(1):47-59. doi: 10.1038/s41579-019-0273-7. Epub 2019 Nov 14.
8
The flip side of phospho-signalling: Regulation of protein dephosphorylation and the protein phosphatase 2Cs.
Plant Cell Environ. 2019 Oct;42(10):2913-2930. doi: 10.1111/pce.13616. Epub 2019 Aug 7.
10
Two Faces of CwlM, an Essential PknB Substrate, in Mycobacterium tuberculosis.
Cell Rep. 2018 Oct 2;25(1):57-67.e5. doi: 10.1016/j.celrep.2018.09.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验