Department of Physics, University of California San Diego, La Jolla, CA 92093-0374, U.S.A.
Marine Physical Laboratory, Scripps Institution of Oceanography, and Department of Physics, University of California San Diego, La Jolla, CA 92093-0374, U.S.A.
Neural Comput. 2022 Jun 16;34(7):1545-1587. doi: 10.1162/neco_a_01515.
Using methods from nonlinear dynamics and interpolation techniques from applied mathematics, we show how to use data alone to construct discrete time dynamical rules that forecast observed neuron properties. These data may come from simulations of a Hodgkin-Huxley (HH) neuron model or from laboratory current clamp experiments. In each case, the reduced-dimension, data-driven forecasting (DDF) models are shown to predict accurately for times after the training period. When the available observations for neuron preparations are, for example, membrane voltage V(t) only, we use the technique of time delay embedding from nonlinear dynamics to generate an appropriate space in which the full dynamics can be realized. The DDF constructions are reduced-dimension models relative to HH models as they are built on and forecast only observables such as V(t). They do not require detailed specification of ion channels, their gating variables, and the many parameters that accompany an HH model for laboratory measurements, yet all of this important information is encoded in the DDF model. As the DDF models use and forecast only voltage data, they can be used in building networks with biophysical connections. Both gap junction connections and ligand gated synaptic connections among neurons involve presynaptic voltages and induce postsynaptic voltage response. Biophysically based DDF neuron models can replace other reduced-dimension neuron models, say, of the integrate-and-fire type, in developing and analyzing large networks of neurons. When one does have detailed HH model neurons for network components, a reduced-dimension DDF realization of the HH voltage dynamics may be used in network computations to achieve computational efficiency and the exploration of larger biological networks.
利用非线性动力学方法和应用数学中的插值技术,我们展示了如何仅使用数据构建离散时间动力规则来预测观测神经元特性。这些数据可以来自 Hodgkin-Huxley (HH) 神经元模型的模拟,也可以来自实验室电流钳实验。在每种情况下,降维、数据驱动的预测 (DDF) 模型都被证明可以在训练期后准确地进行预测。例如,当神经元制剂的可用观测值仅为膜电压 V(t) 时,我们使用非线性动力学中的时滞嵌入技术生成一个适当的空间,在该空间中可以实现完整的动力学。与 HH 模型相比,DDF 构造是降维模型,因为它们是基于并仅预测 V(t) 等可观测值构建的。它们不需要详细指定离子通道、它们的门控变量以及实验室测量中伴随 HH 模型的许多参数,但所有这些重要信息都编码在 DDF 模型中。由于 DDF 模型仅使用和预测电压数据,因此它们可用于构建具有生物物理连接的网络。神经元之间的缝隙连接和配体门控突触连接都涉及到突触前电压并诱导突触后电压响应。基于生物物理的 DDF 神经元模型可以替代其他降维神经元模型,例如,积分和触发类型的模型,用于开发和分析大型神经元网络。当确实有用于网络组件的详细 HH 模型神经元时,HH 电压动力学的降维 DDF 实现可用于网络计算,以实现计算效率并探索更大的生物网络。