Suppr超能文献

使用 SHAP 方法预测 ADHD 儿童和青少年的学业表现。

Predictions of Academic Performance of Children and Adolescents with ADHD Using the SHAP Approach.

机构信息

Dept. of Computing and Civil Construction, Federal Center for Technological Education of Minas Gerais, Brazil.

Dept. of Computing, Pontifical Catholic University of Minas Gerais, Brazil.

出版信息

Stud Health Technol Inform. 2022 Jun 6;290:655-659. doi: 10.3233/SHTI220159.

Abstract

Attention-Deficit/Hyperactivity Disorder (ADHD) is a neuro-developmental disorder characterized by inattention and/or impulsivity-hyperactivity symptoms. Through Machine Learning methods and the SHAP approach, this work aims to discover which features have the most significant impact on the students' performance with ADHD in arithmetic, writing and reading. The SHAP allowed us to deepen the model's understanding and identify the most relevant features for academic performance. The experiments indicated that the Raven_Z IQ test score is the factor with the most significant impact on academic performance in all disciplines. Then, the mother's schooling, being from a private school, and the student's social class were the most frequently highlighted features. In all disciplines, the student having ADHD emerged as an important feature with a negative impact but less relevance than the previous features.

摘要

注意缺陷多动障碍(ADHD)是一种神经发育障碍,其特征是注意力不集中和/或冲动-多动症状。通过机器学习方法和 SHAP 方法,本工作旨在发现哪些特征对 ADHD 学生在算术、写作和阅读方面的表现有最大的影响。SHAP 使我们能够深入了解模型,并确定对学业表现最相关的特征。实验表明,Raven_Z IQ 测试分数是所有学科中对学业成绩影响最大的因素。其次,母亲的受教育程度、来自私立学校以及学生的社会阶层是最常被强调的特征。在所有学科中,患有 ADHD 的学生是一个重要特征,但其负面影响较小,不如前面提到的特征重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验