Suppr超能文献

基于有界变形函数的可变形图像配准的逼近算法分割。

Splitting proximate algorithm for deformable image registration based on functions of bounded deformation.

机构信息

Department of Mathematics, Nanjing University, Nanjing, P.R. China.

出版信息

Med Phys. 2022 Aug;49(8):5149-5159. doi: 10.1002/mp.15721. Epub 2022 Jun 15.

Abstract

BACKGROUND

Deformable image registration is a crucial task in the field of medical image analysis. Functions of bounded deformation (BD) have been proved effective for modeling the displacement fields between medical images since they can capture the discontinuity of displacement fields along edges of organs and tissues.

PURPOSE

However, we find that at the same time, BD functions-based models tend to obtain discontinuous displacement fields inside the regions of organs and tissues due to image noises in some cases and the presented gradient descent algorithm is time-consuming. To alleviate these problems, we propose a faster algorithm named SPA: splitting proximate algorithm.

METHODS

In the framework of variable-splitting scheme, we incorporate a proximal term in the deformable registration energy based on functions of BD.

RESULTS

The proposed algorithm can efficiently solve the original model and obtain displacement fields, which look more natural and plausible. Numerical experiments show the effectiveness and stability of the proposed algorithm.

CONCLUSIONS

The proposed SPA is able to drastically register the images with a plausible deformation field and not sensitive to noise.

摘要

背景

变形图像配准是医学图像分析领域的一项关键任务。有界变形(BD)函数已被证明在模拟医学图像之间的位移场方面非常有效,因为它们可以捕捉器官和组织边缘的位移场的不连续性。

目的

然而,我们发现,在某些情况下,由于图像噪声,BD 函数模型也会在器官和组织区域内产生不连续的位移场,并且所提出的梯度下降算法非常耗时。为了解决这些问题,我们提出了一种更快的算法,名为 SPA:分裂逼近算法。

方法

在变分分裂方案的框架内,我们在基于 BD 函数的可变形配准能量中加入了一个近端项。

结果

所提出的算法可以有效地解决原始模型,并获得看起来更自然和合理的位移场。数值实验表明了所提出算法的有效性和稳定性。

结论

所提出的 SPA 能够以合理的变形场快速注册图像,并且对噪声不敏感。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验