Suppr超能文献

估算罕见病的患病率:以长链脂肪酸氧化障碍为例。

Estimating the Prevalence of Rare Diseases: Long-Chain Fatty Acid Oxidation Disorders as an Illustrative Example.

机构信息

Ultragenyx Pharmaceutical, Inc., 60 Leveroni Ct, Novato, CA, 94949, USA.

Humanumeric LLC, Austin, TX, USA.

出版信息

Adv Ther. 2022 Jul;39(7):3361-3377. doi: 10.1007/s12325-022-02186-2. Epub 2022 Jun 8.

Abstract

INTRODUCTION

Determining the epidemiology of disease is critical for multiple reasons, including to perform risk assessment, compare disease rates in varying populations, support diagnostic decisions, evaluate health care needs and disease burden, and determine the economic benefit of treatment. However, establishing epidemiological measures for rare diseases can be difficult owing to small patient populations, variable diagnostic techniques, and potential disease and diagnostic heterogeneity. To determine the epidemiology of rare diseases, investigators often develop estimation models to account for missing or unobtainable data, and to ensure that their findings are representative of their desired patient population.

METHODS

A modeling methodology to estimate the prevalence of rare diseases in one such population-patients with long-chain fatty acid oxidation disorders (LC-FAOD)-as an illustrative example of its applicability.

RESULTS

The proposed model begins with reliable source data from newborn screening reports and applies to them key modifiers. These modifiers include changes in population growth over time and variable standardization rates of LC-FAOD screening that lead to (1) a confirmed diagnosis and (2) improvements in standards of care and survival estimates relative to the general population. The model also makes necessary assumptions to allow the broad applicability of the estimation of LC-FAOD prevalence, including rates of diagnosed versus undiagnosed patients in the USA over time.

CONCLUSIONS

Although each rare disease is unique, the approach described here and demonstrated in the estimation of LC-FAOD prevalence provides the necessary tools to calculate key epidemiological estimates useful in performing risk assessment analyses; comparing disease rates between different subgroups of people; supporting diagnostic decisions; planning health care needs; comparing disease burden, including cost; and determining the economic benefit of treatment.

摘要

简介

确定疾病的流行病学对于多个原因至关重要,包括进行风险评估、比较不同人群中的疾病发生率、支持诊断决策、评估卫生保健需求和疾病负担,以及确定治疗的经济效益。然而,由于患者人群较少、诊断技术多样以及潜在的疾病和诊断异质性,确定罕见病的流行病学可能具有挑战性。为了确定罕见病的流行病学,研究人员通常会开发估计模型来处理缺失或无法获得的数据,并确保他们的研究结果代表其所需的患者群体。

方法

一种建模方法,用于估计一个此类人群——长链脂肪酸氧化障碍(LC-FAOD)患者——中罕见病的患病率,作为其适用性的说明性示例。

结果

所提出的模型从新生儿筛查报告中的可靠源数据开始,并对其应用关键修饰符。这些修饰符包括随时间变化的人口增长变化和 LC-FAOD 筛查的标准化率变化,这些变化导致(1)确诊诊断和(2)与一般人群相比,护理标准和生存估计的改善。该模型还做出了必要的假设,以允许广泛应用 LC-FAOD 患病率的估计,包括美国随时间推移诊断患者与未诊断患者的比率。

结论

尽管每种罕见病都是独特的,但此处描述的方法和在 LC-FAOD 患病率估计中的应用提供了计算关键流行病学估计的必要工具,这些估计可用于进行风险评估分析;比较不同人群之间的疾病发生率;支持诊断决策;规划卫生保健需求;比较疾病负担,包括成本;并确定治疗的经济效益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f98b/9239941/3469ab4abe66/12325_2022_2186_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验