Lehrstuhl für Theoretische Chemie / Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany.
Lehrstuhl für Theoretische Chemie / Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany.
J Pharm Sci. 2022 Oct;111(10):2898-2906. doi: 10.1016/j.xphs.2022.06.001. Epub 2022 Jun 5.
We outline comparably simple molecular simulation techniques to elucidate the interactions that determine the polymorphism of carbamazepine. Starting from the established GAFF molecular mechanics model, only a small series of tailor-made improvements is needed to tackle the subtle differences in the interaction energies of polymorphs I - IV. On this basis, molecular dynamics simulations provide melting enthalpies at < 1 kcal/mol accuracy (0.2 kcal/mol for forms I-III) as compared to the experiment. Yet, the predicted stability ranking of III > I > II > IV only partially reproduces the experimentally observed III > I > IV > II series. Despite this limitation, we demonstrate how insights from molecular simulation offer the elucidation of possible factors for polymorph control. Apart from characterizing bulk crystals, we outline the evaluation of size-dependent profiles of crystallite formation energy. Contrasting the contributions of bulk, surface and edge terms to the formation energy of nano-scale precipitates, we suggest a multi-step nucleation mechanism leading from amorphous aggregates to crystallites. We argue that carbamazepine aggregates of less than ∼100 molecules adopt a spherical shape to minimize edge/surface energy - overcompensating the loss in bulk energy inherent to non-crystalline ordering in the inner core. In turn, for large crystallites polymorph form III is preferred, whilst suitable spatial confinement to crystallites of 100-500 carbamazepine molecules appears to promote form II.
我们概述了一些相对简单的分子模拟技术,以阐明决定卡马西平多晶型的相互作用。从已建立的 GAFF 分子力学模型出发,只需要进行一小系列定制的改进,就可以解决多晶型 I-IV 之间相互作用能的细微差异。在此基础上,分子动力学模拟提供了与实验相比在 <1 kcal/mol 精度(I-III 形式为 0.2 kcal/mol)下的熔融焓。然而,预测的稳定性排序 III > I > II > IV 仅部分再现了实验观察到的 III > I > IV > II 系列。尽管存在这种局限性,但我们展示了分子模拟提供的见解如何用于阐明控制多晶型的可能因素。除了对块状晶体进行表征外,我们还概述了对微晶形成能的尺寸依赖性分布的评估。对比体相、表面和边缘项对纳米级沉淀物形成能的贡献,我们提出了一个多步成核机制,从非晶态团聚体到晶核。我们认为,少于 ∼100 个分子的卡马西平聚集体采用球形以最小化边缘/表面能 - 过度补偿非晶态有序的内在损失核心的体能。反过来,对于大的晶核,III 型多晶型是优选的,而对于 100-500 个卡马西平分子的晶核的适当空间限制似乎促进了 II 型。