Max Planck Institute for Nuclear Physics, Heidelberg, Germany.
RIKEN, Ulmer Fundamental Symmetries Laboratory, Wako, Japan.
Nature. 2022 Jun;606(7916):878-883. doi: 10.1038/s41586-022-04761-7. Epub 2022 Jun 8.
Helium-3 has nowadays become one of the most important candidates for studies in fundamental physics, nuclear and atomic structure, magnetometry and metrology, as well as chemistry and medicine. In particular, He nuclear magnetic resonance (NMR) probes have been proposed as a new standard for absolute magnetometry. This requires a high-accuracy value for the He nuclear magnetic moment, which, however, has so far been determined only indirectly and with a relative precision of 12 parts per billon. Here we investigate the He ground-state hyperfine structure in a Penning trap to directly measure the nuclear g-factor of He [Formula: see text], the zero-field hyperfine splitting [Formula: see text] Hz and the bound electron g-factor [Formula: see text]. The latter is consistent with our theoretical value [Formula: see text] based on parameters and fundamental constants from ref. . Our measured value for the He nuclear g-factor enables determination of the g-factor of the bare nucleus [Formula: see text] via our accurate calculation of the diamagnetic shielding constant [Formula: see text]. This constitutes a direct calibration for He NMR probes and an improvement of the precision by one order of magnitude compared to previous indirect results. The measured zero-field hyperfine splitting improves the precision by two orders of magnitude compared to the previous most precise value and enables us to determine the Zemach radius to [Formula: see text] fm.
氦-3 如今已成为基础物理、核与原子结构、磁力计和计量学以及化学和医学研究的最重要候选物之一。特别是,氦核磁共振(NMR)探针已被提议作为绝对磁力计的新标准。这需要高精度的氦核磁矩值,然而,迄今为止,该值仅能通过间接方法确定,相对精度为 12 个十亿分之一。在这里,我们在彭宁陷阱中研究氦的基态精细结构,以直接测量氦的核 g 因子 [Formula: see text]、零场精细分裂 [Formula: see text] Hz 和束缚电子 g 因子 [Formula: see text]。后者与我们基于参考文献 [Formula: see text] 中的参数和基本常数的理论值 [Formula: see text] 一致。我们测量的氦核 g 因子可通过我们对反磁屏蔽常数 [Formula: see text] 的精确计算来确定裸核的 g 因子 [Formula: see text]。这为氦 NMR 探针提供了直接校准,并将以前间接结果的精度提高了一个数量级。测量的零场精细分裂与以前最精确的值相比提高了两个数量级的精度,并使我们能够确定 Zemach 半径为 [Formula: see text] fm。