Ansari Mohd Zahid, Seo Kang-Min, Kim Soo-Hyun, Ansari Sajid Ali
School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Korea.
Institute of Materials Technology, Yeungnam University, Gyeongsan 38541, Korea.
Nanomaterials (Basel). 2022 May 30;12(11):1873. doi: 10.3390/nano12111873.
Supercapacitors (SCs) have attracted attention as an important energy source for various applications owing to their high power outputs and outstanding energy densities. The electrochemical performance of an SC device is predominantly determined by electrode materials, and thus, the selection and synthesis of the materials are crucial. Metal oxides (MOs) and their composites are the most widely used pseudocapacitive SC electrode materials. The basic requirements for fabricating high-performance SC electrodes include synthesizing and/or chemically modifying unique conducting nanostructures, optimizing a heterostructure morphology, and generating large-surface-area electroactive sites, all of which predominantly rely on various techniques used for synthesizing MO materials and fabricating MO- and MO-composite-based SC electrodes. Therefore, an SC's background and critical aspects, the challenges associated with the predominant synthesis techniques (including hydrothermal and microwave-assisted syntheses and chemical-bath and atomic-layer depositions), and resulting electrode electrochemical performances should be summarized in a convenient, accessible report to accelerate the development of materials for industrial SC applications. Therefore, we reviewed the most pertinent studies on these synthesis techniques to provide insight into the most recent advances in synthesizing MOs and fabricating their composite-based SC electrodes as well as to propose research directions for developing MO-based electrodes for applications to next-generation SCs.
超级电容器(SCs)因其高功率输出和出色的能量密度,作为各种应用的重要能源而备受关注。超级电容器器件的电化学性能主要由电极材料决定,因此,材料的选择和合成至关重要。金属氧化物(MOs)及其复合材料是使用最广泛的赝电容型超级电容器电极材料。制造高性能超级电容器电极的基本要求包括合成和/或化学修饰独特的导电纳米结构、优化异质结构形态以及生成大表面积电活性位点,所有这些主要依赖于用于合成金属氧化物材料和制造基于金属氧化物及金属氧化物复合材料的超级电容器电极的各种技术。因此,应在一份便捷、易懂的报告中总结超级电容器的背景和关键方面、与主要合成技术(包括水热合成、微波辅助合成、化学浴沉积和原子层沉积)相关的挑战以及由此产生的电极电化学性能,以加速用于工业超级电容器应用的材料开发。因此,我们回顾了这些合成技术的最相关研究,以深入了解金属氧化物合成及其基于复合材料的超级电容器电极制造的最新进展,并为开发用于下一代超级电容器的基于金属氧化物的电极提出研究方向。