Shandong Women's University, Shandong, Jinan 250300, China.
School of Film and Television Media, Shanghai Normal University, Shanghai 200234, China.
Comput Intell Neurosci. 2022 May 31;2022:4951912. doi: 10.1155/2022/4951912. eCollection 2022.
In this paper, we analyze the construction of cross-media collaborative filtering neural network model to design an in-depth model for fast video click-through rate projection based on cross-media collaborative filtering neural network. In this paper, by directly extracting the image features, behavioral features, and audio features of short videos as video feature representation, more video information is considered than other models. The experimental results show that the model incorporating multimodal elements improves AUC performance metrics compared to those without multimodal features. In this paper, we take advantage of recurrent neural networks in processing sequence information and incorporate them into the deep-width model to make up for the lack of capability of the original deep-width model in learning the dependencies between user sequence data and propose a deep-width model based on attention mechanism to model users' historical behaviors and explore the influence of different historical behaviors of users on current behaviors using the attention mechanism. Data augmentation techniques are used to deal with cases where the length of user behavior sequences is too short. This paper uses the input layer and top connection when introducing historical behavior sequences. The models commonly used in recent years are selected for comparison, and the experimental results show that the proposed model improves in AUC, accuracy, and log loss metrics.
在本文中,我们分析了跨媒体协同过滤神经网络模型的构建,设计了一种基于跨媒体协同过滤神经网络的快速视频点击率预测的深度模型。在本文中,通过直接提取短视频的图像特征、行为特征和音频特征作为视频特征表示,考虑了比其他模型更多的视频信息。实验结果表明,与没有多模态特征的模型相比,包含多模态元素的模型提高了 AUC 性能指标。在本文中,我们利用循环神经网络处理序列信息,并将其融入到深度宽度模型中,弥补了原始深度宽度模型在学习用户序列数据之间依赖关系方面的不足,提出了一种基于注意力机制的深度宽度模型,用于对用户的历史行为进行建模,并利用注意力机制探索用户不同历史行为对当前行为的影响。数据增强技术用于处理用户行为序列长度过短的情况。本文在引入历史行为序列时使用输入层和顶层连接。选择了近年来常用的模型进行比较,实验结果表明,所提出的模型在 AUC、准确率和对数损失度量方面都有所提高。