Suppr超能文献

从(Stål)(半翅目:飞虱科)中鉴定类 - 样元件的功能特征。

Functional characterization of -like elements from (Stål) (Hemiptera: Delphacidae).

机构信息

State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.

出版信息

J Zhejiang Univ Sci B. 2022 Jun 15;23(6):515-527. doi: 10.1631/jzus.B2101090.

Abstract

is a transposable DNA element originally discovered in the cabbage looper moth (). The transposon can introduce exogenous fragments into a genome, constructing a transgenic organism. Nevertheless, the comprehensive analysis of endogenous -like elements (s) is important before using , because they may influence the genetic stability of transgenic lines Herein, we conducted a genome-wide analysis of s in the brown planthopper (BPH) (Stål) (Hemiptera: Delphacidae), and identified a total of 28 sequences. All -like elements (s) were present as multiple copies in the genome of BPH. Among the identified s, had the highest copy number and it was distributed on five chromosomes. The full length of consisted of terminal inverted repeats and sub-terminal inverted repeats at both terminals, as well as a single open reading frame transposase encoding 546 amino acids. Furthermore, transposase caused precise excision and transposition in cultured insect cells and also restored the original TTAA target sequence after excision. A cross-recognition between the transposon and the transposon was also revealed in this study. These findings provide useful information for the construction of transgenic insect lines.

摘要

是一种可转座的 DNA 元件,最初在甘蓝夜蛾()中发现。转座子可以将外源片段引入基因组,构建转基因生物。然而,在使用之前,对内源性类似元件(s)进行全面分析是很重要的,因为它们可能影响转基因系的遗传稳定性。在此,我们对褐飞虱(BPH)(Stål)(半翅目:飞虱科)中的 s 进行了全基因组分析,共鉴定出 28 个序列。所有类似元件(s)在 BPH 基因组中以多个拷贝存在。在鉴定出的 s 中,具有最高的拷贝数,它分布在五条染色体上。全长由末端反向重复和末端的亚末端反向重复以及单个编码 546 个氨基酸的转座酶开放阅读框组成。此外,转座酶在培养的昆虫细胞中引起精确的切除和转位,并且在切除后恢复原始 TTAA 靶序列。在这项研究中还揭示了 转座子和 转座子之间的交叉识别。这些发现为构建转基因昆虫系提供了有用的信息。

相似文献

1
Functional characterization of -like elements from (Stål) (Hemiptera: Delphacidae).
J Zhejiang Univ Sci B. 2022 Jun 15;23(6):515-527. doi: 10.1631/jzus.B2101090.
2
PLE-wu, a new member of piggyBac transposon family from insect, is active in mammalian cells.
J Biosci Bioeng. 2014 Oct;118(4):359-66. doi: 10.1016/j.jbiosc.2014.03.010. Epub 2014 Apr 21.
3
piggyBac-like elements in the pink bollworm, Pectinophora gossypiella.
Insect Mol Biol. 2010 Apr;19(2):177-84. doi: 10.1111/j.1365-2583.2009.00964.x. Epub 2009 Dec 15.
4
piggyBac-like elements in the tobacco budworm, Heliothis virescens (Fabricius).
Insect Mol Biol. 2006 Aug;15(4):435-43. doi: 10.1111/j.1365-2583.2006.00653.x.
6
Large diversity of the piggyBac-like elements in the genome of Tribolium castaneum.
Insect Biochem Mol Biol. 2008 Apr;38(4):490-8. doi: 10.1016/j.ibmb.2007.04.012. Epub 2007 May 22.
7
Cloning and characterization of piggyBac-like elements in lepidopteran insects.
Genetica. 2011 Jan;139(1):149-54. doi: 10.1007/s10709-010-9542-0. Epub 2011 Jan 6.
8
Molecular Evolution of piggyBac Superfamily: From Selfishness to Domestication.
Genome Biol Evol. 2017 Feb 1;9(2):323-339. doi: 10.1093/gbe/evw292.
9
piggyBac Transposon.
Microbiol Spectr. 2015 Apr;3(2):MDNA3-0028-2014. doi: 10.1128/microbiolspec.MDNA3-0028-2014.

引用本文的文献

1
The derived transposase 5 (PGBD5) can interact with human -like elements.
bioRxiv. 2025 Aug 2:2025.07.31.667870. doi: 10.1101/2025.07.31.667870.
2
Deciphering odontogenic myxoma: the role of copy number variations as diagnostic signatures.
J Zhejiang Univ Sci B. 2024 Dec 15;25(12):1071-1082. doi: 10.1631/jzus.B2400081.

本文引用的文献

1
CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement.
J Zhejiang Univ Sci B. 2021 Apr 15;22(4):253-284. doi: 10.1631/jzus.B2100009.
2
CRISPR/Cas9-mediated knockout of the NlCSAD gene results in darker cuticle pigmentation and a reduction in female fecundity in Nilaparvata lugens (Hemiptera: Delphacidae).
Comp Biochem Physiol A Mol Integr Physiol. 2021 Jun;256:110921. doi: 10.1016/j.cbpa.2021.110921. Epub 2021 Feb 19.
3
Unpredictable recombination of PB transposon in Silkworm: a potential risk.
Mol Genet Genomics. 2021 Mar;296(2):271-277. doi: 10.1007/s00438-020-01743-0. Epub 2020 Nov 17.
4
Structural basis of seamless excision and specific targeting by piggyBac transposase.
Nat Commun. 2020 Jul 10;11(1):3446. doi: 10.1038/s41467-020-17128-1.
5
TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data.
Mol Plant. 2020 Aug 3;13(8):1194-1202. doi: 10.1016/j.molp.2020.06.009. Epub 2020 Jun 23.
6
Mutations in NlInR1 affect normal growth and lifespan in the brown planthopper Nilaparvata lugens.
Insect Biochem Mol Biol. 2019 Dec;115:103246. doi: 10.1016/j.ibmb.2019.103246. Epub 2019 Oct 13.
7
LINE-1 Evasion of Epigenetic Repression in Humans.
Mol Cell. 2019 Aug 8;75(3):590-604.e12. doi: 10.1016/j.molcel.2019.05.024. Epub 2019 Jun 20.
8
CRISPR/Cas9-mediated knockout of two eye pigmentation genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae).
Insect Biochem Mol Biol. 2018 Feb;93:19-26. doi: 10.1016/j.ibmb.2017.12.003. Epub 2017 Dec 11.
9
Molecular Evolution of piggyBac Superfamily: From Selfishness to Domestication.
Genome Biol Evol. 2017 Feb 1;9(2):323-339. doi: 10.1093/gbe/evw292.
10
Insect transformation with piggyBac: getting the number of injections just right.
Insect Mol Biol. 2016 Jun;25(3):259-71. doi: 10.1111/imb.12220. Epub 2016 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验