Suppr超能文献

荧光 A 和 A 腺苷受体拮抗剂作为流式细胞术探针。

Fluorescent A and A adenosine receptor antagonists as flow cytometry probes.

机构信息

Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, NIH, NIDDK, LBC, Bldg. 8A, Rm. B1A-19, Bethesda, MD, 20892-0810, USA.

Current Address: Chemistry Department, Emory University, 1093 Rollins Research Center, Atlanta, GA, 30322, USA.

出版信息

Purinergic Signal. 2023 Sep;19(3):565-578. doi: 10.1007/s11302-022-09873-3. Epub 2022 Jun 10.

Abstract

Adenosine receptor (AR) ligands are being developed for metabolic, cardiovascular, neurological, and inflammatory diseases and cancer. The ease of drug discovery is contingent on the availability of pharmacological tools. Fluorescent antagonist ligands for the human A and AARs were synthesized using two validated pharmacophores, 1,3-dipropyl-8-phenylxanthine and triazolo[1,5-c]quinazolin-5-yl)amine, which were coupled to eight reporter fluorophores: AlexaFluor, JaneliaFluor (JF), cyanine, and near infrared (NIR) dyes. The conjugates were first screened using radioligand binding in HEK293 cells expressing one of the three AR subtypes. The highest affinities at AAR were K 144-316 nM for 10, 12, and 19, and at AAR affinity of K 21.6 nM for 19. Specific binding of JF646 conjugate MRS7774 12 to the HEK293 cell surface AAR was imaged using confocal microscopy. Compound 19 MRS7535, a triazolo[1,5-c]quinazolin-5-yl)amine containing a Sulfo-Cy7 NIR dye, was suitable for AAR characterization in whole cells by flow cytometry (K 11.8 nM), and its bitopic interaction mode with an AAR homology model was predicted. Given its affinity and selectivity (11-fold vs. AAR, ~ 50-fold vs. AAR and AAR) and a good specific-to-nonspecific binding ratio, 19 could be useful for live cell or potentially a diagnostic in vivo NIR imaging tool and/or therapy targeting the AAR.

摘要

腺嘌呤受体 (AR) 配体正在被开发用于治疗代谢、心血管、神经和炎症疾病以及癌症。药物发现的容易程度取决于药理学工具的可用性。使用两种经过验证的药效基团,即 1,3-二丙基-8-苯基黄嘌呤和三唑并[1,5-c]喹唑啉-5-基)胺,合成了用于人类 A 和 AAR 的荧光拮抗剂配体,然后将这两种配体与八种报告荧光团:AlexaFluor、JaneliaFluor(JF)、cyanine 和近红外(NIR)染料偶联。首先在表达三种 AR 亚型之一的 HEK293 细胞中使用放射性配体结合筛选这些偶联物。在 AAR 中,10、12 和 19 的 K 144-316 nM 亲和力最高,在 AAR 亲和力中,K 21.6 nM 亲和力最高。使用共聚焦显微镜对 HEK293 细胞表面 AAR 与 JF646 缀合物 MRS7774 12 的特异性结合进行成像。化合物 19 MRS7535 是一种含有 Sulfo-Cy7 NIR 染料的三唑并[1,5-c]喹唑啉-5-基)胺,通过流式细胞术(K 11.8 nM)适合用于整个细胞中的 AAR 表征,并且预测了其与 AAR 同源模型的双位相互作用模式。鉴于其亲和力和选择性(对 AAR 的 11 倍,对 AAR 和 AAR 的~50 倍)以及良好的特异性与非特异性结合比,19 可用于活细胞或潜在的体内 NIR 成像工具和/或针对 AAR 的治疗。

相似文献

1
Fluorescent A and A adenosine receptor antagonists as flow cytometry probes.
Purinergic Signal. 2023 Sep;19(3):565-578. doi: 10.1007/s11302-022-09873-3. Epub 2022 Jun 10.
2
Allosteric Antagonism of the A Adenosine Receptor by a Series of Bitopic Ligands.
Cells. 2020 May 12;9(5):1200. doi: 10.3390/cells9051200.
3
Subtype-Selective Fluorescent Ligands as Pharmacological Research Tools for the Human Adenosine A Receptor.
J Med Chem. 2020 Mar 12;63(5):2656-2672. doi: 10.1021/acs.jmedchem.9b01856. Epub 2020 Jan 9.
5
Selectivity is species-dependent: Characterization of standard agonists and antagonists at human, rat, and mouse adenosine receptors.
Purinergic Signal. 2015 Sep;11(3):389-407. doi: 10.1007/s11302-015-9460-9. Epub 2015 Jul 1.
6
Pharmacological characterization of DPTN and other selective A adenosine receptor antagonists.
Purinergic Signal. 2021 Dec;17(4):737-746. doi: 10.1007/s11302-021-09823-5. Epub 2021 Oct 28.
10
A Adenosine Receptor Antagonists: Are Triazolotriazine and Purine Scaffolds Interchangeable?
Molecules. 2022 Apr 7;27(8):2386. doi: 10.3390/molecules27082386.

引用本文的文献

1
.
J Med Chem. 2023 Aug 24;66(16):11399-11413. doi: 10.1021/acs.jmedchem.3c00854. Epub 2023 Aug 2.

本文引用的文献

1
Selective A Adenosine Receptor Antagonist Radioligand for Human and Rodent Species.
ACS Med Chem Lett. 2022 Mar 2;13(4):623-631. doi: 10.1021/acsmedchemlett.1c00685. eCollection 2022 Apr 14.
2
Single Stabilizing Point Mutation Enables High-Resolution Co-Crystal Structures of the Adenosine A Receptor with Preladenant Conjugates.
Angew Chem Int Ed Engl. 2022 May 23;61(22):e202115545. doi: 10.1002/anie.202115545. Epub 2022 Mar 24.
3
Ligand-directed covalent labelling of a GPCR with a fluorescent tag in live cells.
Commun Biol. 2020 Nov 27;3(1):722. doi: 10.1038/s42003-020-01451-w.
4
Medicinal chemistry of P2 and adenosine receptors: Common scaffolds adapted for multiple targets.
Biochem Pharmacol. 2021 May;187:114311. doi: 10.1016/j.bcp.2020.114311. Epub 2020 Oct 29.
5
A near-infrared fluorogenic dimer enables background-free imaging of endogenous GPCRs in living mice.
Chem Sci. 2020 Jun 17;11(26):6824-6829. doi: 10.1039/d0sc01018a. eCollection 2020 Jul 14.
6
Pitfalls and challenges of the purinergic signaling cascade in obesity.
Biochem Pharmacol. 2020 Dec;182:114214. doi: 10.1016/j.bcp.2020.114214. Epub 2020 Sep 6.
8
Adenosine A Receptor Antagonists for Cancer Immunotherapy.
J Med Chem. 2020 Nov 12;63(21):12196-12212. doi: 10.1021/acs.jmedchem.0c00237. Epub 2020 Jul 30.
9
A Adenosine Receptors Mediate Whole-Body Insulin Sensitivity in a Prediabetes Animal Model: Primary Effects on Skeletal Muscle.
Front Endocrinol (Lausanne). 2020 Apr 28;11:262. doi: 10.3389/fendo.2020.00262. eCollection 2020.
10
Allosteric Antagonism of the A Adenosine Receptor by a Series of Bitopic Ligands.
Cells. 2020 May 12;9(5):1200. doi: 10.3390/cells9051200.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验