Suppr超能文献

通过整合微阵列数据分析探索缺血性脑卒中的生物标志物。

Exploring biomarkers for ischemic stroke through integrated microarray data analysis.

机构信息

School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China.

School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China.

出版信息

Brain Res. 2022 Sep 1;1790:147982. doi: 10.1016/j.brainres.2022.147982. Epub 2022 Jun 9.

Abstract

Stroke is the third leading cause of disability-adjusted life years worldwide, and drugs available for its treatment are limited. This study aimed to explore high-confidence candidate genes associated with ischemic stroke (IS) through bioinformatics analysis and identify potential diagnostic biomarkers and gene-drug interactions. Weighted gene coexpression network analysis (WGCNA) and differentially expressed genes (DEGs) were integrated to identify overlapping genes. Then, high-confidence candidate genes were screened by least absolute shrinkage and selection operator (LASSO) regression. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic value of high-confidence candidate genes as biomarkers for IS. The NetworkAnalyst database was used to construct the TF-gene network and miRNA-TF regulatory network of the high-confidence candidate genes. The DGIdb database was used to identified gene-drug interactions. Through the comprehensive analysis of GSE58294 and GSE16561, 10 high-confidence candidate genes were identified by LASSO regression: ARG1, LY96, ABCA1, SLC22A4, CD163, TPM2, SLC25A42, ID3, FAM102A and CD79B. FAM102A had the highest diagnostic value, and the area under curve (AUC), sensitivity and specificity values were 0.974, 0.919 and 0.936, respectively. The HPA database demonstrated that 10 high-confidence candidate genes were expressed in the brain and blood in normal humans. Finally, DGIdb database analysis identified 8 gene-drug interactions. We identified IS-related diagnostic biomarkers and gene-drug interactions that potentially provide new insights into the diagnosis and treatment of IS.

摘要

中风是全球导致残疾调整生命年的第三大原因,可用的治疗药物有限。本研究旨在通过生物信息学分析探讨与缺血性中风(IS)相关的高可信度候选基因,并确定潜在的诊断生物标志物和基因-药物相互作用。加权基因共表达网络分析(WGCNA)和差异表达基因(DEGs)整合用于识别重叠基因。然后,通过最小绝对值收缩和选择算子(LASSO)回归筛选高可信度候选基因。接收器操作特征(ROC)曲线用于评估高可信度候选基因作为 IS 生物标志物的诊断价值。使用 NetworkAnalyst 数据库构建高可信度候选基因的 TF-基因网络和 miRNA-TF 调控网络。使用 DGIdb 数据库识别基因-药物相互作用。通过对 GSE58294 和 GSE16561 的综合分析,通过 LASSO 回归鉴定出 10 个高可信度候选基因:ARG1、LY96、ABCA1、SLC22A4、CD163、TPM2、SLC25A42、ID3、FAM102A 和 CD79B。FAM102A 具有最高的诊断价值,曲线下面积(AUC)、敏感性和特异性值分别为 0.974、0.919 和 0.936。HPA 数据库表明,10 个高可信度候选基因在正常人类的大脑和血液中表达。最后,DGIdb 数据库分析鉴定出 8 个基因-药物相互作用。我们确定了与 IS 相关的诊断生物标志物和基因-药物相互作用,这可能为 IS 的诊断和治疗提供新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验